Squared and reversed

Algebra Level 5

3 a 2 + 2 b 2 + c 2 \large 3a^2+2b^2+c^2

Given that a , b a,b and c c are positive real numbers satisfying a + 2 b + 3 c = 1 2 a+2b+3c=\dfrac{1}{2} , find the minimum value of the expression above.

Give your answer in 3 significant figures.


The answer is 0.02206.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Sep 15, 2016

Similar solution to @Harsh Shrivastava , perhaps better presented.

By Cauchy-Schwarz inequality :

( 1 3 3 a + 2 2 b + 3 c ) 2 ( ( 1 3 ) 2 + ( 2 ) 2 + ( 3 ) 2 ) ( ( 3 a ) 2 + ( 2 b ) 2 + ( c ) 2 ) ( a + 2 b + 3 c ) 2 ( 1 3 + 2 + 9 ) ( 3 a 2 + 2 b 2 + c 2 ) ( 1 2 ) 2 34 3 ( 3 a 2 + 2 b 2 + c 2 ) 3 a 2 + 2 b 2 + c 2 3 4 ( 34 ) 0.02206 \begin{aligned} \left(\color{#D61F06}{\frac 1{\sqrt 3}}\color{#3D99F6}{\sqrt 3 a} + \color{#D61F06}{\sqrt 2}\color{#3D99F6}{\sqrt 2 b} + \color{#D61F06}{3}\color{#3D99F6}{c}\right)^2 & \le \left( \left(\color{#D61F06}{\frac 1{\sqrt 3}}\right)^2 + (\color{#D61F06}{\sqrt 2})^2 + (\color{#D61F06}{3})^2 \right) \left( (\color{#3D99F6}{\sqrt 3 a})^2 + (\color{#3D99F6}{\sqrt 2 b})^2 + (\color{#3D99F6}{c})^2 \right) \\ (a+2b+3c)^2 & \le \left(\frac 13 + 2 + 9 \right)(3a^2+2b^2+c^2) \\ \left( \frac 12 \right)^2 & \le \frac {34}3 (3a^2+2b^2+c^2) \\ \implies 3a^2+2b^2+c^2 & \ge \frac 3{4(34)} \approx \boxed{0.02206} \end{aligned}


By Lagrange multipliers :

The problem can also be solved using Lagrange multipliers.

Let F ( a , b , c , λ ) = 3 a 2 + 2 b 2 + c 2 λ ( a + 2 b + 3 c 1 2 ) F(a,b,c,\lambda) = 3a^2+2b^2+c^2 - \lambda \left(a+2b+3c - \dfrac 12\right) , where λ \lambda is the Lagrange multiplier.

Then, we have: F a = 6 a λ \dfrac {\partial F}{\partial a} = 6a - \lambda , F b = 4 b 2 λ \dfrac {\partial F}{\partial b} = 4b - 2\lambda , F c = 2 c 3 λ \dfrac {\partial F}{\partial c} = 2c - 3 \lambda and F λ = a + 2 b + 3 c 1 2 \dfrac {\partial F}{\partial \lambda} = a+2b+3c - \dfrac 12 .

Equating F a = F b = F c = F λ = 0 \dfrac {\partial F}{\partial a} = \dfrac {\partial F}{\partial b} = \dfrac {\partial F}{\partial c} = \dfrac {\partial F}{\partial \lambda} = 0 . we have: 6 a = 2 a = 2 3 c = λ 6a=2a=\dfrac 23 c = \lambda b = 3 a \implies b=3a and c = 9 a c=9a . Substituting in a + 2 b + 3 c = 1 2 a+2b+3c = \dfrac 12 , we have a = 1 68 a = \dfrac 1{68} , and substituting that in 3 a 2 + 2 b 2 + c 2 3a^2+2b^2+c^2 we get the minimum. 3 a 2 + 2 b 2 + c 2 = ( 3 + 18 + 81 ) a 2 = 102 6 8 2 0.02206 \implies 3a^2+2b^2+c^2 = (3 + 18+81)a^2 = \dfrac {102}{68^2} \approx \boxed{0.02206}

Harsh Shrivastava
Sep 15, 2016

By Cauchy Schwarz Inequality ,

( ( 3 a ) 2 + ( 2 b ) 2 + ( c ) 2 ) ( ( 1 3 ) 2 + ( 2 ) 2 + ( 3 ) 2 ) ( a + 2 b + 3 c ) 2 ((\sqrt{3}a)^2+(\sqrt{2}b)^2 + (c)^{2})((\frac{1}{\sqrt{3}})^2 + (\sqrt{2})^2 +(3)^2) \geq (a+2b+3c)^2

\implies Minimum value of our expression is 0.02205882352 0.02205882352 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...