An algebra problem by Abhijith Asokan

Algebra Level 3

Given that x , y , z x,y,z satisfy the following system of equations:-

{ x + 1 y = 7 3 y + 1 z = 4 z + 1 x = 1 \begin{cases} x+\frac { 1 }{ y } =\frac { 7 }{ 3 } \\ y+\frac { 1 }{ z } =4 \\ z+\frac { 1 }{ x } =1 \end{cases}

What is the value of x y z xyz ?


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

8 solutions

Ahmed El-Moneim
Sep 16, 2014

By multiplying the three equations:

(xyz + y + x + 1/z + z + 1/x + 1/y + 1/xyz) = 28/3

xyz + 1/xyz = 2

then

xyz = 1

A very nice way to solve this problem!

Niaz Ghumro - 6 years, 8 months ago

i just use my intuition and its right xD

i`m so lucky hahaha xD

Leonard Lusares - 6 years, 8 months ago

Nice and simple.

William Li - 6 years, 8 months ago
Ahmad Hesham
Sep 17, 2014

You have two approaches to deal with such problems :

1-The easy non-frustrating approach

2- The long hard to solve approach

let's begin with the easy non-frustrating one first :

By multiplying the equations : ( x + 1 y ) ( y + 1 z ) ( z + 1 x ) = ( 7 3 ) ( 4 ) ( 1 ) \\ (x+\frac { 1 }{ y } )(y+\frac { 1 }{ z } )(z+\frac { 1 }{ x } )=(\frac { 7 }{ 3 } )(4)(1)

x y z + y + x + 1 z + z + 1 x + 1 y + 1 x y z = 28 3 xyz+y+x+\frac { 1 }{ z } +z+\frac { 1 }{ x } +\frac { 1 }{ y } +\frac { 1 }{ xyz } =\frac { 28 }{ 3 }

Looks pretty scattered , doesn't it ? let's give it some order

x y z + 1 x y z + ( x + 1 y ) + ( y + 1 z ) + ( z + 1 x ) = 28 3 xyz+\frac { 1 }{ xyz }+(x+\frac { 1 }{ y } )+(y+\frac { 1 }{ z } )+(z+\frac { 1 }{ x } )=\frac { 28 }{ 3 }

x y z + 1 x y z + 7 3 + 4 + 1 = 28 3 xyz+\frac { 1 }{ xyz } +\frac { 7 }{ 3 } +4+1=\frac { 28 }{ 3 }

x y z + 1 x y z = 6 3 = 2 xyz+\frac { 1 }{ xyz } =\frac { 6 }{ 3 } =2

Multiplying by x y z xyz

( x y z ) 2 2 ( x y z ) + 1 = 0 { (xyz) }^{ 2 }-2(xyz)+1=0

x y z = 1 \boxed { xyz=1 }

As For the other approach , It basically counts on finding the value of x , y , z x,y,z , but I'll solve it by finding only one of them

We Begin it by multiplying the first equation by y y :

x y + 1 = 7 y 3 xy+1=\frac { 7y }{ 3 }

x y = 7 y 3 1 ( 1 ) xy=\frac { 7y }{ 3 } -1\rightarrow \quad (1)

We'll need this one , but not now

Back to the first equation :

x = 1 y 7 y 3 = 7 y 3 3 y x=\frac { 1 }{ y } -\frac { 7y }{ 3 } =\frac { 7y-3 }{ 3y }

Use this to substitute x in the third equation :

z + 1 7 y 3 3 y = 1 z+\frac { 1 }{ \frac { 7y-3 }{ 3y } } =1

z + 3 y 7 y 3 = 1 z+\frac { 3y }{ 7y-3 } =1

And in the second equation :

1 z = 4 y z = 1 4 y \frac { 1 }{ z } =4-y\quad \Longleftrightarrow \quad z=\frac { 1 }{ 4-y }

1 4 y + 3 y 7 y 3 = 1 \therefore \frac { 1 }{ 4-y } +\frac { 3y }{ 7y-3 } =1

After simplifying , it should be like this :

4 y 2 9 y + 12 = 0 ( 2 y 3 ) 2 = 0 y = 3 2 4{ y }^{ 2 }-9y+12=0\\ { (2y-3) }^{ 2 }=0\\ y=\frac { 3 }{ 2 }

We have every thing in need . now , Let's get to what we want :

Back to the third equation and multiply it with x y xy :

x y z + y = x y xyz+y=xy

From (1) :

x y z + y = 7 y 3 1 xyz+y=\frac { 7y }{ 3 } -1

x y z = 4 y 3 1 xyz=\frac { 4y }{ 3 } -1

x y z = 4 3 3 2 1 xyz=\frac { 4*3 }{ 3*2 } -1

x y z = 1 \boxed { xyz=1 }

very nice solution....

Artemis Fortu - 6 years, 8 months ago

amazing :)

Jharren Ace Magpantay - 6 years, 8 months ago

I tried solving it by just substituting valus ._.

Rusab Asher - 6 years, 8 months ago

after the easy one, you type "As For the other approach , It basically counts on finding the value ofxyz , but I'll solve it by finding only one of them We Begin it by multiplying the first equation by y :" you form an equation" xy=7y/3-1" but after that you type "We'll need this one , but not now Back to the first equation :" there the first equation is give wrong ............you have given "x=1/y-7y/3" but the correct one can be seen on the question ie. x=-1/y+7/3 and therefore the whole ans after that is wrong

Hussain Bharmal - 6 years, 7 months ago
Ra Ka
Sep 16, 2014

Well i din't find the value of x, y & z but found the ans the other way..

Multiplying equation 1, 2 & 3..

Later simplifying we get an equation

xyz+x+y+z+1/x+1/y+1/z+1/xyz=28/3

Again simplifying & considering a=xyz

We get, a^2-2a+1=0

Rest is simple..

Antonio Fanari
Sep 25, 2014

{ x + 1 y = 7 3 y + 1 z = 4 z + 1 x = 1 ( 1 ) \begin{cases}x+\frac 1 y=\frac 7 3\\y+\frac 1 z=4\\z + \frac 1 x=1\end{cases}\;(1) multiplying 1st and 2nd members of the equations of system 1 1\, :

( x + 1 y ) ( y + 1 z ) ( z + 1 x ) = 28 3 , ( 2 ) (x+\frac 1 y)(y+\frac 1 z)(z + \frac 1 x)=\frac {28} 3, (2)

x y z + y + x + 1 z + z + 1 x + 1 y + 1 x y z = 28 3 , ( 3 ) xyz+y +x +\frac 1 z+z+\frac 1 x+\frac 1 y+\frac 1 {xyz}=\frac {28} 3, (3)

now introducing ( 1 ) (1) in ( 3 ) (3) :

x y z + 1 x y z = 28 3 7 3 4 1 = 2 , ( 4 ) xyz + \frac 1 {xyz}=\frac{28} 3-\frac 7 3-4-1=2, (4) denoting x y z = t , t 0 , ( 4 ) xyz=t,\,t \ne 0, (4) become:

t + 1 t = 2 , ( 5 ) t+\frac1 t=2, (5) t 2 2 t + 1 = 0 , ( 6 ) t^2-2t+1=0, (6) ( t 1 ) 2 = 0 , ( 7 ) (t-1)^2=0, (7) equation. ( 7 ) (7)\, has solution: t = x y z = 1 t=xyz=\boxed 1

Vinit Béléy
Sep 24, 2014

x + 1/y = 7/3 x = 7/3 - 1/y = (7y-3)/3y

z + 1/x = 1 z = 1 - 1/x = 1 - 3y/(7y-3) = (4y - 3)/(7y - 3)

y + 1/z = 4 y = 4 - 1/z = 4 - (7y - 3)/(4y - 3) y = (9y - 9)/(4y - 3)

Cross-Multiplying and simplifying we get: 4y^2 - 12y + 9 = 0 Therefore, y = 3/2

Using the value of y, we get x = 5/3; z = 2/5

x y z = 5/3 * 3/2 * 2/5 = 1

Aaaaa Bbbbb
Sep 16, 2014

z = 1 1 / x = ( x 1 ) / x , z=1-1/x=(x-1)/x, y = 4 1 / z = ( 4 z 1 ) / z , y=4-1/z=(4z-1)/z, ( 4 z 1 ) / z x / ( x 1 ) , (4z-1)/z-x/(x-1), 1 / x = 1 z , 1/x=1-z, x = 1 / ( 1 z ) , x=1/(1-z), 1 / ( 1 z ) + z / ( 4 z 1 ) = 7 / 3 1/(1-z)+z/(4z-1)=7/3 < = > ( 4 z 1 ) + z ( 1 z ) = ( 7 / 3 ) ( 1 z ) ( 4 z 1 ) <=>(4z-1)+z(1-z)=(7/3)(1-z)(4z-1) < = > z 2 + 5 z 1 = ( 7 / 3 ) ( 4 z 2 + 5 z 1 ) <=>-z^2+5z-1=(7/3)(-4z^2+5z-1) < = > 3 ( z 2 + 5 z 1 ) = 7 ( 4 z 2 + 5 z 1 ) <=>3(-z^2+5z-1)=7(-4z^2+5z-1) 25 z 2 20 z + 4 = 0 25z^2-20z+4=0 ( 5 z 2 ) 2 = 0 (5z-2)^2=0 z = 2 / 5 z=2/5 1 / x = 1 2 / 5 = 3 / 5 1/x=1-2/5=3/5 x = 5 / 3 x=5/3 y = ( 8 / 5 1 ) / ( 2 / 5 ) = ( 3 / 5 ) / ( 2 / 5 ) = 3 / 2 y=(8/5-1)/(2/5)=(3/5)/(2/5)=3/2 x y z = 2 / 5 5 / 3 3 / 2 = 1 xyz=2/5*5/3*3/2=\boxed{1}

Ryan Almadin
Nov 3, 2014

all's well, ends well :D

Abdul Lah
Sep 29, 2014

first find out the value of z from 3rd equation and value of y from 1st equation and substitute the values of y and z in 2nd equation you will get the equation 9X^2 - 30X + 25= 0 so we get X= 5/3 now put the value of x in third equation we get z = 2/5 and from first equation we get y = 3/2 and Hence XYZ = (5/3)(3/2)(2/5)= 1

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...