An algebra problem by Abu Bakar Khan

Algebra Level 3

r = 1 25 i r ! = ? \large \sum_{r=1}^{25} i^{r!} = \, ?

Notations:

  • i = 1 i = \sqrt {-1} is the imaginary unit .
  • ! ! is the factorial notation. For example, 8 ! = 1 × 2 × 3 × × 8 8! = 1\times2\times3\times\cdots\times8 .
i + 22 i + 22 i + 20 i + 20 0 0 i + 30 i +30 i -i i + 31 i +31 i i

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Tapas Mazumdar
Sep 15, 2016

We know that,

i 4 n + 1 = i 1 = i i 4 n + 2 = i 2 = 1 i 4 n + 3 = i 3 = i i 4 n = i 4 = 1 i^{4n+1}=i^{1}=i \\ i^{4n+2}=i^{2}=-1 \\ i^{4n+3}=i^{3}=-i \\ i^{4n}=i^{4}=1

Now,

r = 1 25 i r ! = i 1 ! + i 2 ! + i 3 ! + i 4 ! + + i 25 ! \displaystyle \sum_{r=1}^{25}{i^{r!}} = i^{1!} + i^{2!} + i^{3!} + i^{4!} + \cdots + i^{25!}

4 ( 4 + x ) ! \because 4|(4+x)! ,where x Z x\in\mathbb{Z} and x 0 x\ge 0 .

So,

i 4 ! = i 5 ! = i 6 ! = = i 25 ! = 1 i^{4!}=i^{5!}=i^{6!}=\cdots=i^{25!}=1

Hence,

r = 1 25 i r ! = i + i 2 + i 6 + 1 + 1 + + 1 22 times r = 1 25 i r ! = i + ( 1 ) + ( 1 ) + 22 i 6 = i 4 × 1 + 2 = i 2 = 1 r = 1 25 i r ! = i + 20 ~~~~~~~\displaystyle \sum_{r=1}^{25}{i^{r!}} = i + i^{2} + i^{6} + \underbrace{1 + 1 + \cdots + 1}_{22~~ \text{times}} \\ \Longrightarrow \displaystyle \sum_{r=1}^{25}{i^{r!}} = i + (-1) + (-1) + 22 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ \color{#302B94}{\because i^{6}=i^{4\times1+2}=i^{2}=-1} \\ \Longrightarrow \displaystyle \sum_{r=1}^{25}{i^{r!}} = \boxed {i + 20}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...