An algebra problem by Achal Jain

Algebra Level 3

Let f ( x ) = x 5 + x + 1 f(x)= x^{5}+x+1 , whose roots are α 1 \alpha_1 , α 2 \alpha_2 , α 3 \alpha_3 , α 4 \alpha_4 , and α 5 \alpha_5 and let p ( x ) = x 2 2 p(x)= x^{2}-2 . If the value of p ( α 1 ) p ( α 2 ) p ( α 3 ) p ( α 4 ) p ( α 5 ) = λ p(\alpha_1)p(\alpha_2)p(\alpha_3)p(\alpha_4)p(\alpha_5) = \lambda , what is λ \sqrt{|\lambda|} ?

Notation: | \cdot | denotes the absolute value function .

8 7 5 6

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Sep 11, 2017

λ = k = 1 5 p ( a k ) = k = 1 5 ( a k 2 2 ) = k = 1 5 ( a k 2 ) ( a k + 2 ) = k = 1 5 ( 2 a k ) ( 2 a k ) Note that f ( x ) = k = 1 5 ( x a k ) = f ( 2 ) f ( 2 ) = ( 4 2 + 2 + 1 ) ( 4 2 2 + 1 ) = ( 5 2 + 1 ) ( 5 2 + 1 ) = 50 + 1 = 49 \begin{aligned} \lambda & = \prod_{k=1}^5 p(a_k) \\ & = \prod_{k=1}^5 \left(a_k^2 - 2\right) \\ & = \prod_{k=1}^5 \left(a_k - \sqrt 2\right)\left(a_k + \sqrt 2\right) \\ & = \prod_{k=1}^5 \left(\sqrt 2 - a_k \right)\left(-\sqrt 2 - a_k \right) & \small \color{#3D99F6} \text{Note that }f(x) = \prod_{k=1}^5 \left(x - a_k \right) \\ & = f\left(\sqrt 2\right) f\left(-\sqrt 2\right) \\ & = \left(4\sqrt 2+\sqrt 2 +1\right) \left(-4\sqrt 2-\sqrt 2 +1\right) \\ & = \left(5\sqrt 2+1\right) \left(-5\sqrt 2 +1\right) \\ & = -50+1 = -49\end{aligned}

λ = 49 = 7 \implies \sqrt{|\lambda|} = \sqrt{|-49|} = \boxed{7}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...