An algebra problem by akash more

Algebra Level 3

( x a ) ( x b ) k = 0 (x-a)(x-b)-k=0 has roots c c and d d .

Find a equation with roots a a and b b .

x^2+(c-d)+cd-k=0 none (x-c)(x-a)=0 (x-c)(x-d)+k=0

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Arnab Das
Sep 27, 2014

( x a ) ( x b ) + k (x -a)(x-b) + k has roots c and d , therefore ( x a ) ( x b ) k = ( x c ) ( x d ) (x -a)(x-b) - k= (x-c)(x-d)

This implies ( x c ) ( x d ) + k = ( x a ) ( x b ) (x-c)(x-d) + k = (x -a)(x-b) ; which is quadratic equation with roots a and b

Mvs Saketh
Sep 26, 2014

( x a ) ( x b ) k = 0 o b s e r v e t h e e q u a t i o n s , a s c a n d d a r e t h e r o o t s o f t h e e q u a t i o n w e h a v e c d = a b k a n d c + d = a + b s o w e h a v e a b = c d + k a n d a + b = c + d w h i c h c l e a r l y i s t h e r e l a t i o n s b e t w e e n t h e r o o t s o f t h e e q u a t i o n x 2 ( c + d ) x + c d + k = ( x c ) ( x d ) + k (x-a)(x-b)\quad -\quad k\quad =\quad 0\quad \\ \\ observe\quad the\quad equations,\\ \\ as\quad c\quad and\quad d\quad are\quad the\quad roots\quad of\quad the\quad equation\\ \\ we\quad have\quad cd=\quad ab-k\\ and\quad c+d\quad =\quad a+b\\ \\ so\quad we\quad have\quad \\ \\ ab=\quad cd+k\\ and\quad a+b=\quad c+d\\ \\ which\quad clearly\quad is\quad the\quad relations\quad between\quad the\quad roots\quad of\quad the\quad equation\\ \\ { x }^{ 2 }-(c+d)x+cd+k\quad =\quad (x-c)(x-d)\quad +\quad k\quad

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...