An algebra problem by Akash singh

Algebra Level 3

A = 3 2 + 4 2 + 7 2 + 8 2 + 1 1 2 + 1 2 2 + . . . + 9 9 2 + 10 0 2 A = 3^2 + 4^2 + 7^2 + 8^2 + 11^2 + 12^2 +...+ 99^2 + 100^2

B = 1 2 + 2 2 + 5 2 + 6 2 + 9 2 + 1 0 2 + . . . + 9 7 2 + 9 8 2 B = 1^2 + 2^2 + 5^2 + 6^2 + 9^2 + 10^2 +...+97^2 + 98^2

then A B = ? ? ? A-B=???

-11000 -10100 10100 11000

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Ikkyu San
Jul 31, 2015

A = 3 2 + 4 2 + 7 2 + 8 2 + 1 1 2 + 1 2 2 + + 9 9 2 + 10 0 2 = ( 3 2 + 7 2 + 1 1 2 + + 9 9 2 ) + ( 4 2 + 8 2 + 1 2 2 + + 10 0 2 ) = n = 1 25 ( 4 n 1 ) 2 + n = 1 25 ( 4 n ) 2 = n = 1 25 ( 16 n 2 8 n + 1 ) + n = 1 25 16 n 2 = n = 1 25 ( 16 n 2 8 n + 1 + 16 n 2 ) = n = 1 25 ( 32 n 2 8 n + 1 ) \begin{aligned}\begin{aligned}\color{#3D99F6}A=&\ \color{#D61F06}{3^2}+\color{#20A900}{4^2}+\color{#D61F06}{7^2}+\color{#20A900}{8^2}+\color{#D61F06}{11^2}+\color{#20A900}{12^2}+\cdots+\color{#D61F06}{99^2}+\color{#20A900}{100^2}\\=&\ \color{#D61F06}{(3^2+7^2+11^2+\cdots+99^2)}+\color{#20A900}{(4^2+8^2+12^2+\cdots+100^2)}\\=&\ \color{#D61F06}{\displaystyle\sum_{n=1}^{25}(4n-1)^2}+\color{#20A900}{\displaystyle\sum_{n=1}^{25}(4n)^2}\\=&\ \color{#D61F06}{\displaystyle\sum_{n=1}^{25}(16n^2-8n+1)}+\color{#20A900}{\displaystyle\sum_{n=1}^{25}16n^2}\\=&\ \displaystyle\sum_{n=1}^{25}(16n^2-8n+1+16n^2)\\=&\ \color{#3D99F6}{\displaystyle\sum_{n=1}^{25}(32n^2-8n+1)}\end{aligned}\end{aligned}

B = 1 2 + 2 2 + 5 2 + 6 2 + 9 2 + 1 0 2 + + 9 7 2 + 9 8 2 = ( 1 2 + 5 2 + 9 2 + + 9 7 2 ) + ( 2 2 + 6 2 + 1 0 2 + + 9 8 2 ) = n = 1 25 ( 4 n 3 ) 2 + n = 1 25 ( 4 n 2 ) 2 = n = 1 25 ( 16 n 2 24 n + 9 ) + n = 1 25 ( 16 n 2 16 n + 4 ) = n = 1 25 ( 16 n 2 24 n + 9 + 16 n 2 16 n + 4 ) = n = 1 25 ( 32 n 2 40 n + 13 ) \begin{aligned}\begin{aligned}\color{#302B94}B=&\ \color{#624F41}{1^2}+\color{magenta}{2^2}+\color{#624F41}{5^2}+\color{magenta}{6^2}+\color{#624F41}{9^2}+\color{magenta}{10^2}+\cdots+\color{#624F41}{97^2}+\color{magenta}{98^2}\\=&\ \color{#624F41}{(1^2+5^2+9^2+\cdots+97^2)}+\color{magenta}{(2^2+6^2+10^2+\cdots+98^2)}\\=&\ \color{#624F41}{\displaystyle\sum_{n=1}^{25}(4n-3)^2}+\color{magenta}{\displaystyle\sum_{n=1}^{25}(4n-2)^2}\\=&\ \color{#624F41}{\displaystyle\sum_{n=1}^{25}(16n^2-24n+9)}+\color{magenta}{\displaystyle\sum_{n=1}^{25}(16n^2-16n+4)}\\=&\ \displaystyle\sum_{n=1}^{25}(16n^2-24n+9+16n^2-16n+4)\\=&\ \color{#302B94}{\displaystyle\sum_{n=1}^{25}(32n^2-40n+13)}\end{aligned}\end{aligned}

Thus,

A B = n = 1 25 ( 32 n 2 8 n + 1 ) n = 1 25 ( 32 n 2 40 n + 13 ) = n = 1 25 ( 32 n 2 8 n + 1 32 n 2 + 40 n 13 ) = n = 1 25 ( 32 n 12 ) = 32 n = 1 25 n n = 1 25 12 = 32 ( 25 ( 26 ) 2 ) 25 ( 12 ) = 16 ( 650 ) 300 = 10400 300 = 10100 \begin{aligned}\begin{aligned}\color{#3D99F6}A-\color{#302B94}B=&\ \color{#3D99F6}{\displaystyle\sum_{n=1}^{25}(32n^2-8n+1)}-\color{#302B94}{\displaystyle\sum_{n=1}^{25}(32n^2-40n+13)}\\=&\ \displaystyle\sum_{n=1}^{25}(32n^2-8n+1-32n^2+40n-13)\\=&\ \displaystyle\sum_{n=1}^{25}(32n-12)\\=&\ 32\displaystyle\sum_{n=1}^{25}n-\displaystyle\sum_{n=1}^{25}12\\=&\ 32\left(\frac{25(26)}2\right)-25(12)\\=&\ 16(650)-300\\=&\ 10400-300=\boxed{10100}\end{aligned}\end{aligned}

Akash Singh
Jul 30, 2015

here n sq=n*n

A-B= 3sq - 1sq + 4sq - 2sq + 7sq - 5sq + 8sq - 6sq +.......................99sq - 97sq + 100sq - 98sq

using asq-bsq =(a+b)(a-b)

A-B=(3-1)(3+1)+(4-2)(4+2)+(7-5)(7+5)+(8-6)(8+6)+...............+(99-97)(99+97)+(100-98)(100+98)

=2[1+2+3+4+5+6+ . . . . . . . . . . . . . . . . . . +97+98+99+100]=2[(100)(101)]/2 =10100

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...