An algebra problem by Aneesh S.

Algebra Level 1

If log 2 x = 3 \log_2 x = 3 , then what is the value of log x 64 \log_x 64 ?


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

8 solutions

Michael Fuller
Jul 12, 2015

log 2 x = 3 x = 2 3 = 8 log 8 64 = log 8 8 2 = 2 log 8 8 = 2 \large\log _{ 2 }{ x } =3\quad \Rightarrow \quad x={ 2 }^{ 3 }=8\\ \large\log _{ 8 }{ 64 } =\log _{ 8 }{ { 8 }^{ 2 } } =2\log _{ 8 }{ { 8 } } =\large\color{#20A900}{\boxed { 2 }}

Same method :)

Athiyaman Nallathambi - 5 years, 10 months ago
Noel Lo
May 20, 2015

log x 64 = log x 2 6 = 6 log x 2 = 6 log 2 x = 6 3 = 2 \log_x 64 =\log_x 2^6 = 6 \log_x 2 = \frac{6}{\log_2 x} =\frac{6}{3} = \boxed{2}

Triga Fool
Jul 12, 2015

Doing it by Logic:

2 2 cubed is x x This is 8 8 . 64 64 expressed in base 8 8 is 8 2 8^2 , therefore the value is 2 2

Makhib Choudkhuri
Jul 12, 2015

log 2 x = 3 x = 2 3 x = 8 log x 64 log 8 64 what value (power) to the base 8 gives 64? 2 \log _{2}x =3\\x={2}^{3}\\x=8\\ \log _{x}{64}\rightarrow\log _{8}{64} \rightarrow \text{what value (power) to the base 8 gives 64?}\rightarrow 2

Parth Tandon
May 16, 2015

log 2 to the base x=1/3

multiplying 6 on both sides.........

@parth tandon This is an incomplete solution

Abdur Rehman Zahid - 5 years, 10 months ago
. .
Mar 7, 2021

log a b = c \log _ a b = c , then a c = b a ^ c = b .

log 2 x = 3 \log _ 2 x = 3 , then 2 3 = x x = 8 2 ^ 3 = x \to x = 8 .

log x 64 = y \log _ x 64 = y , then x y = 64 8 y = 64 y = 2 x ^ y = 64 \to 8 ^ y = 64 \to y = \boxed { 2 } .

So, the answer is 2 \boxed2 .

Timothy Vu
Jan 19, 2016

Log base 2 of x=3 (Log x)/(Log 2)=3 (Log 2)/(Log x) =1/3 6 times [(log 2)/(Log x)]=6 times (1/3) (6 Log 2)/(Log x)=2 (Log (2^6))/(Log x)=2 (Log 64) / (Log x) = 2 Log base x of 64 = 2

Roberto Mardero
Jul 12, 2015

Solution log x 64 = log x 2 6 = 6 log x 2 , then: 6 log 2 x = 6 / 3 = 2 \log_x 64 = \log_x 2^6 = 6 \log_x 2,\text{then:} \frac{6}{ \log_2x} = 6/3 = 2

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...