What identity can I use?

Algebra Level 2

If a b = 4 a-b=4 and a b = 45 ab=45 , what is the value of a 3 b 3 a^3 -b^3 ?


The answer is 604.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

23 solutions

Sravanth C.
Jun 12, 2015

We know the identity, ( a b ) 3 = a 3 b 3 3 a b ( a b ) (a-b)^3=a^3-b^3-3ab(a-b)

Substituting the values ( a b ) = 4 \color{#EC7300}{(a-b)=4} and a b = 45 \color{#20A900}{ab=45} in the identity, we get: 4 3 = a 3 b 3 3 ( 45 ) ( 4 ) a 3 b 3 = 4 3 + 3 ( 45 ) ( 4 ) a 3 b 3 = 64 + 540 a 3 b 3 = 604 4^3=a^3-b^3-3\color{#20A900}{(45)}\color{#EC7300}{(4)} \\ a^3-b^3=4^3+3\color{#20A900}{(45)}\color{#EC7300}{(4)} \\ a^3-b^3=64+540\\ a^3-b^3=\boxed{604}

Moderator note:

That's a useful identity to be aware of.

It's an intuitive identity if you look at Pascal's Triangle, because the triangle gives you the coefficients of any polynomial of that order if the coefficients of the first order are both 1.

Kazmir Runik - 4 years, 5 months ago
Anish Harsha
Jun 12, 2015

We have, a 3 b 3 = ( a b ) ( a 2 + a b + b 2 ) , a^3- b^3= ( a - b )(a^2 + ab + b^2 ),
a 3 b 3 = ( a b ) ( a 2 2 a b + b 2 + 2 a b + a b ) , a^3 - b^3 = ( a - b ) ( a^2 - 2ab + b^2 + 2ab + ab ),
a 3 b 3 = ( a b ) ( a b ) 2 + 3 a b , a^3 - b^3 = ( a - b ) { ( a - b ) ^2 + 3ab },
a 3 b 3 = 4 ( 4 2 + 3 45 ) = 4 ( 16 + 135 ) a^3- b^3 = 4*( 4^2 + 3* 45 ) = 4* ( 16+135)
= 4 151 = 604. = 4 * 151 = 604.
Ans is 604.



If you find this question interesting, like or share.

Anh Tuan
Jun 13, 2015

First, let square both sides of the equation a - b = 4, which we have

(a-b)^2 = 16

a^2 - 2ab + b^2 = 16

a^2 + b^2 = 16 + 2ab

a^2 + b^2 = 106 (ab =45)

Next, evaluate a^3 - b^3

a^3 - b^3 = (a-b)(a^2 + ab + b^2)

a^3 - b^3 = (a-b)(a^2 + b^2 + ab)

a^3 - b^3 = 4(106 +45)

a^3 - b^3 = 4(151)

a^3 - b^3 = 604

Try to use LaTex

Syed Hamza Khalid - 3 years, 9 months ago
Thành Trần
Jan 26, 2016

a - b = 4, a*b = 45 => a = 9, b = 5 => a^3 - b^3 = 726 - 125 = 604...

Gabriel Páez
Jul 15, 2015

( a b ) = 4 , a b = 45 , 2 ( a b ) = 90 ( a - b ) = 4 , ab = 45 , 2( ab ) = 90

( a b ) 2 = a 2 2 ( a b ) + b 2 , ( a b ) 2 = ( 4 ) 2 = 16 ( a - b )^2 = a^2 - 2( ab ) + b^2 , ( a - b )^2 = (4)^2 = 16

a 2 2 ( a b ) + b 2 = 16 a^2 - 2( ab) + b^2 = 16

a 2 + b 2 = 16 + 2 ( a b ) = 16 + 90 = 106 a^2 + b^2 = 16 + 2( ab ) = 16 + 90 = 106

a 3 b 3 = ( a b ) ( a 2 + a b + b 2 ) a^3 - b^3 = ( a - b ) ( a^2 + ab + b^2 )

Replace everything and: a 3 b 3 = ( 4 ) ( 106 + 45 ) = ( 4 ) ( 151 ) = 604 a^3 - b^3 = ( 4 ) ( 106 + 45 ) = ( 4 ) ( 151 ) = \boxed{604}

Given a - b = 4 and ab = 45, Evaluate a 3 b 3 a^{3} - b^{3}

Solve both sides for a, gives a = 4 + b and a = 45 / b

Therefore 4 + b = 45 / b

Multiply both sides by b gives 4 b + b 2 = 45 4b + b^{2} = 45

Subtract 45 from both sides gives b 2 b^{2} + 4b- 45 = 0

Factoring gives ( b + 9 )( b - 5 ) = 0

Therefore b = -9 or b = 5

Substitute b in ab = 45 results in: a(-9) = 45, a = -5 or a(5) = 45, a = 9

Solve a 3 b 3 a^{3} - b^{3} by substitution of ( a, b ): ( -5, -9 ) or ( 9, 5 )

Results in:

( 5 ) 3 ( 9 ) 3 (-5)^{3} - (-9)^{3} = -125 - ( -729 ) = 604

or

( 9 ) 3 ( 5 ) 3 (9)^{3} - (5)^{3} = 729 - 125 = 604

Therefore a 3 b 3 a^{3} - b^{3} = 604 \boxed {604}

The way I really did it in my head:

If ab = 45 and a - b = 4

The simplest numbers to get ab = 45 are ab = 9 * 5 or 15 * 3 (in some combination)

If a - b = 4, the only possibility is a = 9 and b = 5

Plug in to a 3 b 3 a^{3} - b^{3}

( 9 ) 3 ( 5 ) 3 (9)^{3} - (5)^{3}

729 - 125 = 604 \boxed {604}

A Former Brilliant Member - 5 years, 6 months ago

Log in to reply

i did it like you

Youssef Hassan F - 5 years, 4 months ago
Isaac Buckley
Jun 20, 2015

a 3 b 3 = ( a b ) ( a 2 + a b + b 2 ) = ( a b ) [ ( a b ) 2 + 3 a b ] a^3-b^3=(a-b)(a^2+ab+b^2)=(a-b)[(a-b)^2+3ab]

Subbing in a b = 4 a-b=4 and a b = 45 ab=45

a 3 b 3 = 4 × ( 4 2 + 3 × 45 ) = 604 a^3-b^3=4\times(4^2+3\times45)=\boxed{604}

Mohammad Khaza
Oct 31, 2017

a 3 b 3 = ( a b ) 3 + 3 a b ( a b ) a^3-b^3=(a-b)^3+3ab(a-b)

or, a 3 b 3 = 4 3 + 3 × 45 × 4 a^3-b^3=4^3+3 \times 45\times4 ...........[values are given]

or, a 3 b 3 = 64 + 540 = 604 a^3-b^3=64+540=604

a b = 4 a - b = 4 a b = 45 ab = 45 a 3 b 3 = ? a^3 - b^3 = ? ( a b ) 3 = a 3 3 a 2 b + 3 a b 2 b 3 (a - b)^3 = a^3 - 3a^2 b + 3ab^2 - b^3 a 3 b 3 = ( a b ) 3 + 3 a 2 b 3 a b 2 a^3 - b^3 = (a - b)^3 + 3a^2 b - 3ab^2 a 3 b 3 = ( a b ) 3 + 3 ( a 2 b a b 2 ) a^3 - b^3 = (a - b)^3 + 3(a^2 b - ab^2) a 3 b 3 = ( a b ) 3 + 3 ( a b ) a b a^3 - b^3 = (a - b)^3 + 3(a - b)ab a 3 b 3 = ( 4 ) 3 + 3 ( 4 ) 45 a^3 - b^3 = (4)^3 + 3(4)45 a 3 b 3 = 64 + 540 a^3 - b^3 = 64 + 540 a 3 b 3 = 604 a^3 - b^3 = 604

Prabhnoor Singh
Mar 22, 2020

a b = 4... ( i ) a-b=4...(i)

a b = 45... ( i i ) ab=45...(ii)

From ( i ) , (i),

a = b + 4 a=b+4

Substituting the value in ( i i ) , (ii),

( b + 4 ) ( b ) = 45 = 9 5 (b+4)(b)=45=9*5

Hence, b b comes out to be 5

a = b + 4 = 5 + 4 = 9 a=b+4=5+4=9

a 3 b 3 = 729 125 = 604 a^3-b^3=729-125=604

Hence, the answer is 604 604

Ondřej Chmelík
May 19, 2019

In this solution, letters a a and b b are changed to m m and n n , because I used quadratic equation formula, where a a , b b and c c appear.

The solution is 604.

Sumant Chopde
Apr 23, 2019

I noticed that a = 9 a = 9 and b = 5 b = 5 are one of the solutions to the problem. So I subtracted 125 125 from 729 729 to get 604 \boxed{604} . I know that this is not the correct way, but still it works!😉

Gandoff Tan
Apr 15, 2019

( a b ) 3 = a 3 3 a 2 b + 3 a b 2 b 3 4 3 = a 3 b 3 3 a b ( a b ) a 3 b 3 = 64 + 3 ( 45 ) ( 4 ) = 604 \begin{aligned} { (a-b })^{ 3 } & = & { a }^{ 3 }-3{ a }^{ 2 }b+3a{ b }^{ 2 }-{ b }^{ 3 } \\ { 4 }^{ 3 } & = & { a }^{ 3 }-{ b }^{ 3 }-3ab(a-b) \\ { a }^{ 3 }-{ b }^{ 3 } & = & 64+3(45)(4) \\ \quad & = & \boxed { 604 } \end{aligned}

Edwin Gray
Mar 31, 2019

a^3 - b^3 = (a b)[(a - b)^2 + 3ab) = (4)[(16 + 3(45] = 4 (16 + (3)(45)] = 4 151 = 604.

Chew-Seong Cheong
Dec 16, 2017

a 3 b 3 = ( a b ) ( a 2 + a b + b 2 ) = ( a b ) ( a 2 2 a b + b 2 + 3 a b ) = ( a b ) ( ( a b ) 2 + 3 a b ) = 4 ( ( 4 ) 2 + 3 ( 45 ) ) = 4 ( 16 + 135 ) = 604 \begin{aligned} a^3-b^3 & = (a-b)\left(a^2+ab+b^2\right) \\ & = (a-b)\left(a^2-2ab+b^2+3ab \right) \\ & = (a-b)\left((a-b)^2+3ab \right) \\ & = 4\left((4)^2+3(45) \right) \\ & = 4\left(16+135 \right) \\ & = \boxed{604} \end{aligned}

André Hucek
Sep 27, 2017

Since a b = 45 ab = 45 , it is clear that at least one variable must be 5 5 , since 5 5 and it's multiples are the only numbers to have 5 5 as the last digit in their product.

For the sake of the first equation, let's conclude that b = 5 b = 5 and therefore a = 4 + 5 = 9 \rightarrow a = 4+5 = 9 .

After plugging in, we get that: 9 3 5 3 = 729 125 = 604 9^3 - 5^3 = 729 - 125 = \boxed{604}

Betty BellaItalia
Apr 23, 2017

a b = 4 a-b = 4 and a b = 45 ab = 45

The formula that we are mainly going to use is this one:

( x y ) 3 = x 3 3 x 2 y + 3 x y 2 y 3 (x-y)^3 = x^3-3x^2y+3xy^2-y^3

But this can be simplified as ( x y ) 3 + 3 x y ( x + y ) (x-y)^3+3xy(x+y)

In our case the formula becomes : ( a b ) 3 + 3 a b ( a + b ) (a-b)^3+3ab(a+b)

So : ( 4 3 ) + 3 ( 45 ) ( 4 ) (4^3)+3(45)(4)

( 64 ) + ( 540 ) (64)+ (540)

= 604 =604

For more information: visit the Algebraic Manipulation

Since a 3 b 3 = ( a b ) 3 + 3 a b ( a b ) a^3 - b^3 = (a-b)^3 + 3ab(a-b)

Substituting a b = 4 a-b = 4 and a b = 45 ab = 45

We get a 3 b 3 = 604 a^3 - b^3 = 604

Youssef Hassan F
Jan 26, 2016

find the factors of 45 that is 3 5 9 15 now search for the 2 values that have 4 difference between them so they are 9 and 5 now 9^3 - 5^3=604

Amed Lolo
Jan 5, 2016

1st solution, ab=45,a-b=4,a-(45÷a)=4,,,,,,,,,,,a^2 -4a-45=0,a=root of equation ,a=9 or -5,b=5 or -9,so a^3 -b^3 =9^3-5^3=604.####################.another solution,,, (a-b)^3=a^3 -b^3 -2a^2b+2b^2a+ab^2 -a^2b ,a-b=4,,,64=a^3 -b^3 -3a^2b+3ab^2,64=a^3 -b^3+3ab(b-a),ab=45,a^3-b^3=64+3×4×45=604####

a^3-b^3= (a-b)^3+3ab(a-b) Substituting the values a-b=4 and ab=45 in the identity, we get:

Mas Gooddo
Nov 10, 2015

(a-b)=4 cubing both side a^3-b^3-3ab(a-b)=64 then a^3-b^3-3 45 4=64 so a^3-b^3=604

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...