An algebra problem by Anish Roy

Algebra Level 3

How many integers m m satisfy both the following properties:

( i ) 1 m 5000 (i) 1 \leq m \leq 5000

( i i ) m = m + 125 (ii)\lfloor \sqrt{m} \rfloor=\lfloor \sqrt{m + 125} \rfloor

(Here [ x ] [x] denotes the largest integer not exceeding x x , for any real number x x .)


The answer is 72.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Anish Roy
Sep 22, 2017

Let m = m + 125 = k \lfloor \sqrt{m} \rfloor=\lfloor \sqrt{m + 125} \rfloor=k . Then we know that k 2 m < m + 125 < ( k + 1 ) 2 k^2 \leq m < m + 125 < (k + 1)^2 Thus m + 125 < k 2 + 2 k + 1 m + 2 k + 1 m + 125 < k^2 + 2k + 1 \leq m + 2k + 1 This shows that 2 k + 1 > 125 2k + 1 > 125 or k > 62 k > 62 . Using k 2 5000 k^2 \leq 5000 , we get k 70 k \leq 70 . Thus k 63 ; 64 ; 65 ; 66 ; 67 ; 68 ; 69 ; 70 k \in {63; 64; 65; 66; 67; 68; 69; 70} . We observe that 6 3 2 = 3969 63^2 = 3969 and 6 4 2 = 6 3 2 + 127 64^2 = 63^2 + 127 .

Hence 6 3 2 + 125 = 6 3 2 + 1 + 125 = 63 \lfloor \sqrt{63^2 + 125} \rfloor=\lfloor \sqrt{63^2 + 1 + 125} \rfloor= 63 but 6 3 2 + 2 + 125 = 64 \lfloor \sqrt{63^2 + 2 + 125} \rfloor= 64 . Thus we get two values of m m such that m = m + 125 \lfloor \sqrt{m} \rfloor=\lfloor \sqrt{m + 125} \rfloor for k = 63 k = 63 . Similarly, 6 5 2 = 6 4 2 + 129 65^2 = 64^2 + 129 so that 6 4 2 + 125 = 6 4 2 + 1 + 125 = 6 4 2 + 2 + 125 = 6 4 2 + 3 + 125 = 64 \lfloor \sqrt{64^2 + 125}\rfloor=\lfloor \sqrt{64^2 + 1 + 125} \rfloor=\lfloor \sqrt{64^2 + 2 + 125} \rfloor=\lfloor \sqrt{64^2 + 3 + 125} \rfloor= 64 but 642 + 4 + 125 = 65 \lfloor \sqrt{642 + 4 + 125}\rfloor= 65 . Thus we get four values of m m such that m = m + 125 \lfloor \sqrt{m} \rfloor=\lfloor \sqrt{m + 125} \rfloor for k = 64 k = 64 . Continuing, we see that there are 6 ; 8 ; 10 ; 12 ; 14 ; 16 6; 8; 10; 12; 14; 16 values of m m respectively for k = 65 ; 66 ; 67 ; 68 ; 69 ; 70 k = 65; 66; 67; 68; 69; 70 . Together we get

2 + 4 + 6 + 8 + 10 + 12 + 14 + 16 = 2 × 8 × 9 2 = 72 2 + 4 + 6 + 8 + 10 + 12 + 14 + 16 = 2 \times \frac{8 \times 9}{2}= 72

values of m m satisfying the given requirement.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...