An algebra problem by Ankit Nigam

Algebra Level 2

If a = i ^ + j ^ + k ^ \overrightarrow { a } =\hat { i } +\hat { j } +\hat { k } , b = 4 i ^ + 3 j ^ + 4 k ^ \overrightarrow { b } =4\hat { i } +3\hat { j } +4\hat { k } and c = i ^ + α j ^ + β k ^ \overrightarrow { c } =\hat { i } +\alpha \hat { j } +\beta \hat { k } are linearly dependent vectors and c = 3 \left| \overrightarrow { c } \right| =\sqrt { 3 } then

PRACTICE FOR BITSAT HERE

α = ± 1 , β = 1 \alpha =\pm 1,\quad \beta =1 α = 1 , β = ± 1 \alpha =-1,\quad \beta =\pm 1 α = 1 , β = 1 \alpha =1,\quad \beta =1 α = 1 , β = ± 1 \alpha =1,\quad \beta =\pm 1

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Ankit Nigam
Apr 22, 2015

c = 3 \left| \overrightarrow { c } \right| =\sqrt { 3 }

1 + α 2 + β 2 = 3 1+{ \alpha }^{ 2 }+{ \beta }^{ 2 }=3

α 2 + β 2 = 2 \therefore { \alpha }^{ 2 }+{ \beta }^{ 2 }=2

s i n c e a + b + c a r e l i n e a r l y d e p e n d e n t since\quad \overrightarrow { a } +\overrightarrow { b } +\overrightarrow { c } are\quad linearly\quad dependent

c = x a + y b \Rightarrow \overrightarrow { c } =x\overrightarrow { a } +y\overrightarrow { b }

i ^ + α j ^ + β k ^ = x ( i + j + k ) + ( 4 i + 3 j + 4 k ) \Rightarrow \hat { i } +\alpha \hat { j } +\beta \hat {k} =x\left( \overrightarrow { i } +\overrightarrow { j } +\overrightarrow { k } \right) +\left( 4\overrightarrow { i } +3\overrightarrow { j } +4\overrightarrow { k } \right)

c o m p a r i n g e q u a t i o n s w e g e t x + 4 y = 1 x + 3 y = α x + 4 y = β comparing\quad equations\quad we\quad get\quad \\ x+4y=1\\ x+3y=\alpha \\ x+4y=\beta

β = 1 a n d f r o m α 2 + β 2 = 2 w e g e t α = ± 1 \therefore \beta =1\quad and\quad from\quad { \alpha }^{ 2 }+{ \beta }^{ 2 }=2\\ \quad we\quad get\quad \alpha =\pm 1\quad

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...