Looks like a reciprocal binomial

Algebra Level 4

Suppose we denote a n \displaystyle a_n as the value of r = 0 n 1 n C r \displaystyle \sum_{r=0}^n \dfrac1{^n C_r } , express r = 0 n r n C r \displaystyle \sum_{r=0}^n \dfrac r{^n C_r} in terms of n n and/or a n a_n .

Clarification :

n C r ^n C_r denote the binomial coefficient, ( n r ) = n ! r ! ( n r ) ! \dbinom{n}{r} = \dfrac{n!}{r!(n-r)!} .

Practice for Bitsat here .
( n 1 ) a n \left( n-1 \right) { a }_{ n } 1 2 n a n \frac { 1 }{ 2 } n{ a }_{ n } none of the above n a n n{ a }_{ n }

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Ankit Nigam
Aug 31, 2015

Thanks for the solution sir. Its like JEE style, I did it in some generalized way...

I t i s g i v e n t h a t a n = 1 ( n 0 ) + 1 ( n 1 ) + . . . . . . . . . 1 ( n n ) It\quad is\quad given\quad that\quad \\ { a }_{ n }=\frac { 1 }{ \left( \begin{matrix} n \\ 0 \end{matrix} \right) } +\frac { 1 }{ \left( \begin{matrix} n \\ 1 \end{matrix} \right) } +.........\frac { 1 }{ \left( \begin{matrix} n \\ n \end{matrix} \right) }

Let S= r = 0 n r ( n r ) \sum _{ r=0 }^{ n }{ \frac { r }{ \left( \begin{matrix} n \\ r \end{matrix} \right) } }

S = 0 ( n 0 ) + 1 ( n 1 ) + 2 ( n 2 ) . . . . . . . . + n ( n n ) \therefore S=\frac { 0 }{ \left( \begin{matrix} n \\ 0 \end{matrix} \right) } +\frac { 1 }{ \left( \begin{matrix} n \\ 1 \end{matrix} \right) } +\frac { 2 }{ \left( \begin{matrix} n \\ 2 \end{matrix} \right) } ........+\frac { n }{ \left( \begin{matrix} n \\ n \end{matrix} \right) }

or S = n ( n n ) + n 1 ( n n 1 ) + n 2 ( n n 2 ) + . . . . . . 0 ( n 0 ) S=\frac { n }{ \left( \begin{matrix} n \\ n \end{matrix} \right) } +\frac { n-1 }{ \left( \begin{matrix} n \\ n-1 \end{matrix} \right) } +\frac { n-2 }{ \left( \begin{matrix} n \\ n-2 \end{matrix} \right) } +......\frac { 0 }{ \left( \begin{matrix} n \\ 0 \end{matrix} \right) }

= n ( n 0 ) + n 1 ( n 1 ) + n 2 ( n 2 ) + . . . . . . 0 ( n n ) [ ( n r ) = ( n n r ) ] =\frac { n }{ \left( \begin{matrix} n \\ 0 \end{matrix} \right) } +\frac { n-1 }{ \left( \begin{matrix} n \\ 1 \end{matrix} \right) } +\frac { n-2 }{ \left( \begin{matrix} n \\ 2 \end{matrix} \right) } +......\frac { 0 }{ \left( \begin{matrix} n \\ n \end{matrix} \right) } \quad \left[ \because \left( \begin{matrix} n \\ r \end{matrix} \right) =\left( \begin{matrix} n \\ n-r \end{matrix} \right) \right]

2 S = n ( n 0 ) + n ( n 1 ) + n ( n 2 ) + . . . . . n ( n n ) \therefore 2S=\frac { n }{ \left( \begin{matrix} n \\ 0 \end{matrix} \right) } +\frac { n }{ \left( \begin{matrix} n \\ 1 \end{matrix} \right) } +\frac { n }{ \left( \begin{matrix} n \\ 2 \end{matrix} \right) } +.....\frac { n }{ \left( \begin{matrix} n \\ n \end{matrix} \right) }

2 S = n [ 1 ( n 0 ) + 1 ( n 1 ) + 1 ( n 2 ) + . . . . . . . . 1 ( n n ) ] \therefore 2S=n\left[ \frac { 1 }{ \left( \begin{matrix} n \\ 0 \end{matrix} \right) } +\frac { 1 }{ \left( \begin{matrix} n \\ 1 \end{matrix} \right) } +\frac { 1 }{ \left( \begin{matrix} n \\ 2 \end{matrix} \right) } +........\frac { 1 }{ \left( \begin{matrix} n \\ n \end{matrix} \right) } \right]

2 S = n [ a n ] \therefore 2S=n\left[ { a }_{ n } \right]

S = n a n 2 \boxed { \therefore S=\frac { n{ a }_{ n } }{ 2 } }

MY FIRST SOLUTION ON BRILLIANT :D

@Ankit Nigam , we really liked your comment, and have converted it into a solution. If you subscribe to this solution, you will receive notifications about future comments.

Brilliant Mathematics Staff - 5 years, 9 months ago

For quick solution, substitute n= 1 and match the given options..

Akhil Bansal - 5 years, 7 months ago
Chew-Seong Cheong
Apr 21, 2015

We can solve this by induction. Let b n = r = 0 n r n C r \space b_n = \displaystyle \sum_{r=0}^n{\frac{r}{^nC_r}} . And let us consider b n a n \dfrac {b_n}{a_n} .

\(\begin{array} {} \dfrac {b_0}{a_0} = \dfrac {\frac{0}{1}}{\frac{1}{1}} & = 0 & \Rightarrow b_0= (0)a_0 = \frac{1}{2}(0)a_0 \\ \dfrac {b_1}{a_1} = \dfrac {\frac{0}{1}+\frac{1}{1}}{\frac{1}{1}+\frac{1}{1}} & = \frac{1}{2} & \Rightarrow b_1= \frac{1}{2}a_1 = \frac{1}{2}(1)a_1 \\ \dfrac {b_2}{a_2} = \dfrac {\frac{0}{1}+\frac{1}{2}+\frac{2}{1}}{\frac{1}{1}+\frac{1}{2}+\frac{1}{1}} & = 1 & \Rightarrow b_2= a_2 = \frac{1}{2}(2)a_2 \\ \dfrac {b_3}{a_3} = \dfrac {\frac{0}{1}+\frac{1}{3}+\frac{2}{3}+\frac{3}{1}}{\frac{1}{1}+\frac{1}{3}+\frac{1}{3}+\frac{1}{1}} & = \frac{3}{2} & \Rightarrow b_3= \frac{3}{2} a_3 = \frac{1}{2}(3)a_3 \\ \dfrac {b_4}{a_4} = \dfrac {\frac{0}{1}+\frac{1}{4}+\frac{2}{6}+\frac{3}{4}+\frac{4}{1}}{\frac{1}{1}+\frac{1}{4}+\frac{1}{6}+\frac{1}{4}+\frac{1}{1}} & = 2 & \Rightarrow b_4 = 2 a_4 = \frac{1}{2}(4)a_4 \\ ... \end{array} \)

b n = r = 0 n r n C r = 1 2 n a n \Rightarrow b_n = \displaystyle \sum_{r=0}^n{\frac{r}{^nC_r}} = \boxed{\dfrac {1}{2}na_n}

Moderator note:

This is not induction. You should show that the pattern always work for all integers as oppose to show that it appears to work for a small amount of integers.

Thanks for the solution sir. Its like JEE style, I did it in some generalized way...

I t i s g i v e n t h a t a n = 1 ( n 0 ) + 1 ( n 1 ) + . . . . . . . . . 1 ( n n ) It\quad is\quad given\quad that\quad \\ { a }_{ n }=\frac { 1 }{ \left( \begin{matrix} n \\ 0 \end{matrix} \right) } +\frac { 1 }{ \left( \begin{matrix} n \\ 1 \end{matrix} \right) } +.........\frac { 1 }{ \left( \begin{matrix} n \\ n \end{matrix} \right) }

Let S= r = 0 n r ( n r ) \sum _{ r=0 }^{ n }{ \frac { r }{ \left( \begin{matrix} n \\ r \end{matrix} \right) } }

S = 0 ( n 0 ) + 1 ( n 1 ) + 2 ( n 2 ) . . . . . . . . + n ( n n ) \therefore S=\frac { 0 }{ \left( \begin{matrix} n \\ 0 \end{matrix} \right) } +\frac { 1 }{ \left( \begin{matrix} n \\ 1 \end{matrix} \right) } +\frac { 2 }{ \left( \begin{matrix} n \\ 2 \end{matrix} \right) } ........+\frac { n }{ \left( \begin{matrix} n \\ n \end{matrix} \right) }

or S = n ( n n ) + n 1 ( n n 1 ) + n 2 ( n n 2 ) + . . . . . . 0 ( n 0 ) S=\frac { n }{ \left( \begin{matrix} n \\ n \end{matrix} \right) } +\frac { n-1 }{ \left( \begin{matrix} n \\ n-1 \end{matrix} \right) } +\frac { n-2 }{ \left( \begin{matrix} n \\ n-2 \end{matrix} \right) } +......\frac { 0 }{ \left( \begin{matrix} n \\ 0 \end{matrix} \right) }

= n ( n 0 ) + n 1 ( n 1 ) + n 2 ( n 2 ) + . . . . . . 0 ( n n ) [ ( n r ) = ( n n r ) ] =\frac { n }{ \left( \begin{matrix} n \\ 0 \end{matrix} \right) } +\frac { n-1 }{ \left( \begin{matrix} n \\ 1 \end{matrix} \right) } +\frac { n-2 }{ \left( \begin{matrix} n \\ 2 \end{matrix} \right) } +......\frac { 0 }{ \left( \begin{matrix} n \\ n \end{matrix} \right) } \quad \left[ \because \left( \begin{matrix} n \\ r \end{matrix} \right) =\left( \begin{matrix} n \\ n-r \end{matrix} \right) \right]

2 S = n ( n 0 ) + n ( n 1 ) + n ( n 2 ) + . . . . . n ( n n ) \therefore 2S=\frac { n }{ \left( \begin{matrix} n \\ 0 \end{matrix} \right) } +\frac { n }{ \left( \begin{matrix} n \\ 1 \end{matrix} \right) } +\frac { n }{ \left( \begin{matrix} n \\ 2 \end{matrix} \right) } +.....\frac { n }{ \left( \begin{matrix} n \\ n \end{matrix} \right) }

2 S = n [ 1 ( n 0 ) + 1 ( n 1 ) + 1 ( n 2 ) + . . . . . . . . 1 ( n n ) ] \therefore 2S=n\left[ \frac { 1 }{ \left( \begin{matrix} n \\ 0 \end{matrix} \right) } +\frac { 1 }{ \left( \begin{matrix} n \\ 1 \end{matrix} \right) } +\frac { 1 }{ \left( \begin{matrix} n \\ 2 \end{matrix} \right) } +........\frac { 1 }{ \left( \begin{matrix} n \\ n \end{matrix} \right) } \right]

2 S = n [ a n ] \therefore 2S=n\left[ { a }_{ n } \right]

S = n a n 2 \boxed { \therefore S=\frac { n{ a }_{ n } }{ 2 } }

MY FIRST SOLUTION ON BRILLIANT :D

Ankit Nigam - 6 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...