An algebra problem by Ankit Nigam

Algebra Level 3

If ω \omega is an imaginary cube root of unity, then ( 1 + ω ω 2 ) 7 { (1+\omega -{ \omega }^{ 2 }) }^{ 7 } equals

PRACTICE FOR BITSAT HERE

128 ω 2 128{ \omega }^{ 2 } 128 ω 128{ \omega } 128 ω 2 -128{ \omega }^{ 2 } 128 ω -128\omega

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Apr 22, 2015

If ω 3 = 1 \omega^3 = 1 , ω 2 + ω + 1 = 0 \Rightarrow \omega^2+\omega+1 = 0 this is because multiplying the latter equation with ω \omega , we have ω 3 + ω 2 + ω = 0 \omega^3+\omega^2+\omega = 0 . Add both side with 1 1 , ω 3 + ω 2 + ω + 1 = 1 \Rightarrow \omega^3+\omega^2+\omega +1 = 1 , ω 3 + 0 = 1 \Rightarrow \omega^3+0 = 1 .

Therefore,

( 1 + ω ω 2 ) 7 = ( ω 2 ω 2 ) 7 = ( 2 ω 2 ) 7 = 128 ω 14 = 128 ω 12 ω 2 = 128 ( ω 3 ) 4 ω 2 = 128 ( 1 ) 4 ω 2 = 128 ω 2 \begin{aligned} (1+\omega-\omega^2)^7 & = (-\omega^2-\omega^2)^7= (-2\omega^2)^7 = -128\omega^{14} = -128\omega^{12}\omega^2 \\ & = -128(\omega^3)^4\omega^2 = -128(1)^4\omega^2 = \boxed{-128\omega^2} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...