Sum is Zero, Fourth Powers Then?

Algebra Level 3

a + b + c = 0 a 2 + b 2 + c 2 = 74 \begin{aligned} a+b+c & = & 0 \\ a^2 + b^2 + c^2 & = & \sqrt{74} \\ \end{aligned}

Real numbers a , b , c a,b,c satisfy the above equations.

What is the value of a 4 + b 4 + c 4 a^4 + b^4 + c^4 ?


The answer is 37.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Michael Fischer
Jul 24, 2014

given: a + b + c = 0 a + b + c = 0 ... (G1)

given: a 2 + b 2 + c 2 = 74 a^2 + b^2 + c^2 = \sqrt{74} ... (G2)

find: a 4 + b 4 + c 4 a^4 + b^4 + c^4

Squaring G1:

( a + b + c ) 2 = a 2 + b 2 + c 2 + 2 ( a b + a c + b c ) (a+b+c)^2 = a^2 + b^2 + c^2 + 2( ab + ac + bc )

0 = 74 + 2 ( a b + a c + b c ) 0 = \sqrt{74} + 2 * ( ab + ac + bc )

( a b + a c + b c ) = 74 ) 2 (ab + ac + bc) = -\frac{\sqrt{74})}{2} ... (E1)

Squaring E1:

( a b + a c + b c ) 2 = 74 4 (ab + ac + bc)^2 = \frac{74}{4}

= a 2 b 2 + a 2 c 2 + b 2 c 2 + = a^2b^2 + a^2c^2 + b^2c^2 + 2 a 2 b c + 2 a b 2 c + 2 a b c 2 2a^2bc + 2ab^2c + 2abc^2

= a 2 b 2 + a 2 c 2 + b 2 c 2 + 2 a b c ( a + b + c ) = a^2b^2 + a^2c^2 + b^2c^2 + 2abc(a + b + c)

= a 2 b 2 + a 2 c 2 + b 2 c 2 = a^2b^2 + a^2c^2 + b^2c^2

So ... a 2 b 2 + a 2 c 2 + b 2 c 2 = 74 4 a^2b^2 + a^2c^2 + b^2c^2 = \frac{74}{4} ... (E2)

Squaring G2:

( a 2 + b 2 + c 2 ) 2 (a^2 + b^2 + c^2)^2 = a 4 + b 4 + c 4 + 2 ( a 2 b 2 + a 2 c 2 + b 2 c 2 ) = a^4 + b^4 + c^4 + 2( a^2b^2 + a^2c^2 + b^2c^2 )

Simplifying using G2 and E2: 74 = ( a 4 + b 4 + c 4 ) + 74 2 74 = (a^4 + b^4 + c^4 ) + \frac{74}{2}

So: a 4 + b 4 + c 4 = 37 Q . E . D . a^4 + b^4 + c^4 = 37 \boxed{Q.E.D.}

Simple and very good solution Thanks, K.K.GARG,India

Krishna Garg - 6 years, 10 months ago
Daniel Liu
Aug 4, 2014

I suggest another approach:

Let a = k x a=kx , b = k y b=ky and c = k z c=kz .

We see that x + y + z = 0 x+y+z=0

Also, k 2 ( x 2 + y 2 + z 2 ) = 74 k^2(x^2+y^2+z^2)=\sqrt{74} so x 2 + y 2 + z 2 = 74 k 2 x^2+y^2+z^2=\dfrac{\sqrt{74}}{k^2}

Seeing that we can have x 2 + y 2 + z 2 x^2+y^2+z^2 be whatever positive number we want as long as we adjust k 2 k^2 accordingly, we make our jobs easier by just setting simple values for x , y , z x,y,z . For example, let ( x , y , z ) = ( 1 , 0 , 1 ) (x,y,z)=(-1,0,1) .

Thus, 74 k 2 = 2 k = 37 2 4 \dfrac{\sqrt{74}}{k^2}=2\implies k=\sqrt[4]{\dfrac{37}{2}}

Which means ( a , b , c ) = ( 37 2 4 , 0 , 37 2 4 ) (a,b,c)=\left(-\sqrt[4]{\dfrac{37}{2}}, 0, \sqrt[4]{\dfrac{37}{2}}\right)

Therefore a 4 + b 4 + c 4 = ( 37 2 4 ) 4 + ( 0 ) 4 + ( 37 2 4 ) 4 = 37 2 + 0 + 37 2 = 37 a^4+b^4+c^4=\left(-\sqrt[4]{\dfrac{37}{2}}\right)^4+(0)^4+\left(\sqrt[4]{\dfrac{37}{2}}\right)^4=\dfrac{37}{2}+0+\dfrac{37}{2}=\boxed{37}

Another approach is to use Newton Sums: Let P ( x ) = x 3 + m x 2 + n x + p = 0 P(x)=x^3+mx^2+nx+p=0 and its roots be a a , b b and c c . We have then by recursion:

S 1 = a + b + c = m S_1=a+b+c=-m

S 2 = a 2 + b 2 + c 2 = m S 1 2 n = m 2 2 n S_2=a^2+b^2+c^2=-mS_{1}-2n=m^2-2n

S 3 = a 3 + b 3 + c 3 = m S 2 n S 1 3 p = m 3 + 3 m n 3 p S_3=a^3+b^3+c^3=-mS_2-nS_1-3p=-m^3+3mn-3p

S 4 = a 4 + b 4 + c 4 = m S 3 n S 2 p S 1 = m 4 + 4 m p 4 m 2 n + 2 n 2 S_4=a^4+b^4+c^4=-mS_3-nS_2-pS_1=m^4+4mp-4m^2n+2n^2

We know that S 1 = 0 S_1=0 , so m = 0 m=0 ; and S 2 = 74 S_2=\sqrt{74} , so n = 74 2 n=-\dfrac{\sqrt{74}}{2} .

Substitute them in S 4 S_4 and obtain, fortunately almost all terms have the factor m m except the last one, so:

S 4 = 2 n 2 = 2 ( 74 2 ) 2 = 37 S_4=2n^2=2\left(-\dfrac{\sqrt{74}}{2}\right)^2=\boxed{37}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...