A probability problem by Atul Kumar Ashish

Probability Level pending

8 ( 40 0 ) + 15 ( 40 1 ) + 22 ( 40 2 ) + 29 ( 40 3 ) + + 288 ( 40 40 ) . 8{40 \choose 0}+15{40 \choose 1}+22{40 \choose 2}+29{40 \choose 3}+\cdots+288{40 \choose 40}. If the value of the expression above can be written as a 2 b a \cdot 2^b , where a a is an odd positive integer and b b is a positive integer, find the value of a + b a+b .

Notation: ( n k ) = n ! k ! ( n k ) ! \dbinom nk = \dfrac{n!}{k!(n-k)!} denotes the binomial coefficient .


The answer is 79.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

S = 8 ( 40 0 ) + 15 ( 40 1 ) + 22 ( 40 2 ) + + 288 ( 40 40 ) = n = 0 40 ( 7 n + 8 ) ( 40 n ) = 7 n = 0 40 ( 40 n ) n + 8 n = 0 40 ( 40 n ) = 7 d d x ( 1 + x ) 40 + 8 ( 1 + x ) 40 where x = 1 (see Note.) = 280 ( 1 + x ) 39 + 8 ( 1 + x ) 40 Putting back x = 1 = 35 2 42 + 2 2 42 = 37 2 42 \begin{aligned} S & = 8 {40 \choose 0} + 15 {40 \choose 1} + 22 {40 \choose 2} + \cdots + 288 {40 \choose 40} \\ & = \sum_{n=0}^{40} (7n+8) {40 \choose n} \\ & = 7 \sum_{n=0}^{40} {40 \choose n}n + 8 \sum_{n=0}^{40} {40 \choose n} \\ & = 7 \frac d{dx} (1+{\color{#3D99F6}x}) ^{40} + 8 (1+{\color{#3D99F6}x})^{40} & \small \color{#3D99F6} \text{where }x = 1 \text{ (see Note.)} \\ & = 280 (1+{\color{#3D99F6}x}) ^{39} + 8 (1+{\color{#3D99F6}x})^{40} & \small \color{#3D99F6} \text{Putting back }x = 1 \\ & = 35\cdot 2^{42} + 2\cdot 2^{42} \\ & = 37\cdot 2^{42} \end{aligned}

a + b = 37 + 42 = 79 \implies a + b = 37 + 42 = \boxed{79}


Note: We note that:

k = 0 n ( n k ) x k = ( 1 + x ) n Putting x = 1 k = 0 n ( n k ) = 2 n d d x k = 0 n ( n k ) x k = d d x ( 1 + x ) n k = 0 n k ( n k ) x k 1 = n ( 1 + x ) n 1 k = 1 n k ( n k ) x k 1 = n ( 1 + x ) n 1 Putting x = 1 k = 1 n k ( n k ) = 2 n 1 n \begin{aligned} \sum_{k=0}^n {n \choose k}x^k & = (1+x)^n & \small \color{#3D99F6} \text{Putting }x = 1 \\ \implies \sum_{k=0}^n {n \choose k} & = 2^n \\ \frac d{dx} \sum_{k=0}^n {n \choose k}x^k & = \frac d{dx} (1+x)^n & \\ \sum_{k=0}^n k{n \choose k}x^{k-1} & = n(1+x)^{n-1} \\ \sum_{k=1}^n k{n \choose k}x^{k-1} & = n(1+x)^{n-1} & \small \color{#3D99F6} \text{Putting }x = 1 \\ \implies \sum_{k=1} ^n k{n \choose k} & = 2^{n-1}n \end{aligned}

how did u convert from the summation notation to differentiation is there any standard criteria

abhishek alva - 4 years, 4 months ago

8 ( 40 0 ) + 15 ( 40 1 ) + 22 ( 40 2 ) + 29 ( 40 3 ) + + 288 ( 40 40 ) = S 8{40 \choose 0}+15{40 \choose 1}+22{40 \choose 2}+29{40 \choose 3}+\cdots+288{40 \choose 40} = S 288 ( 40 0 ) + 281 ( 40 1 ) + 274 ( 40 2 ) + 267 ( 40 3 ) + + 8 ( 40 40 ) = S 288{40 \choose 0}+281{40 \choose 1}+274{40 \choose 2}+267{40 \choose 3}+\cdots+8{40 \choose 40} = S 296 ( 40 0 ) + 296 ( 40 1 ) + 296 ( 40 2 ) + 296 ( 40 3 ) + + 296 ( 40 40 ) = 2 S 296{40 \choose 0}+296{40 \choose 1}+296{40 \choose 2}+296{40 \choose 3}+\cdots+296{40 \choose 40} = 2S 2 S = 296 ( ( 40 0 ) + ( 40 1 ) + ( 40 2 ) + ( 40 3 ) + + ( 40 40 ) ) . 2S = 296\left({40 \choose 0}+{40 \choose 1}+{40 \choose 2}+{40 \choose 3}+\cdots+{40 \choose 40}\right). 2 S = 296 ( 1 + 1 ) 40 2S = 296(1+1)^{40} S = 148 2 40 S = 148\cdot 2^{40} S = 37 2 42 S = 37\cdot 2^{42} a + b = 37 + 42 = 79 a+b = 37+42 = \boxed{79}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...