Will Factoring solve the problem?

Algebra Level 3

( x + 1 x ) 6 ( x 6 + 1 x 6 ) 2 ( x + 1 x ) 3 + ( x 3 + 1 x 3 ) \frac{{\left(x+\dfrac{1}{x}\right)}^6-\left(x^6+\dfrac{1}{x^6}\right)-2}{{\left(x+\dfrac{1}{x}\right)}^3+\left(x^3+\dfrac{1}{x^3}\right)}

If x x is a positive real number , then find the minimum value of the expression above.


The answer is 6.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Sep 17, 2016

This problem has been posted twice:

X = ( x + 1 x ) 6 ( x 6 + 1 x 6 ) 2 ( x + 1 x ) 3 + ( x 3 + 1 x 3 ) = ( x + 1 x ) 6 ( ( x 3 + 1 x 3 ) 2 2 ) 2 ( x + 1 x ) 3 + ( x 3 + 1 x 3 ) = ( x + 1 x ) 6 ( x 3 + 1 x 3 ) 2 ( x + 1 x ) 3 + ( x 3 + 1 x 3 ) = ( ( x + 1 x ) 3 + ( x 3 + 1 x 3 ) ) ( ( x + 1 x ) 3 ( x 3 + 1 x 3 ) ) ( x + 1 x ) 3 + ( x 3 + 1 x 3 ) = ( x + 1 x ) 3 ( x 3 + 1 x 3 ) = ( x 3 + 1 x 3 ) + 3 ( x + 1 x ) ( x 3 + 1 x 3 ) = 3 ( x + 1 x ) By AM-GM inequality x + 1 x 2 3 ( 2 ) = 6 \begin{aligned} X & = \frac{{\left(x+\frac{1}{x}\right)}^6-\left(x^6+\frac{1}{x^6}\right)-2}{{\left(x+\frac{1}{x}\right)}^3+\left(x^3+\frac{1}{x^3}\right)} \\ & = \frac{{\left(x+\frac{1}{x}\right)}^6-\left(\left(x^3+\frac{1}{x^3}\right)^2 - 2\right)-2}{{\left(x+\frac{1}{x}\right)}^3+\left(x^3+\frac{1}{x^3}\right)} \\ & = \frac{{\left(x+\frac{1}{x}\right)}^6-\left(x^3+\frac{1}{x^3}\right)^2}{{\left(x+\frac{1}{x}\right)}^3+\left(x^3+\frac{1}{x^3}\right)} \\ & = \frac{\cancel{\left(\left(x+\frac{1}{x}\right)^3+\left(x^3+\frac{1}{x^3}\right)\right)}\left(\left(x+\frac{1}{x}\right)^3-\left(x^3+\frac{1}{x^3}\right)\right)}{\cancel{\left(x+\frac{1}{x}\right)^3+\left(x^3+\frac{1}{x^3}\right)}} \\ & = \left(x+\frac{1}{x}\right)^3-\left(x^3+\frac{1}{x^3}\right) \\ & =\cancel{\left(x^3+\frac{1}{x^3}\right)} + 3\left(x+\frac{1}{x}\right) - \cancel{\left(x^3+\frac{1}{x^3}\right)} \\ & = 3\left(\color{#3D99F6}{x+\frac{1}{x}}\right) & \small \color{#3D99F6}{\text{By AM-GM inequality } x + \frac 1x \ge 2} \\ & \ge 3(\color{#3D99F6}{2}) = \boxed{6} \end{aligned}

What about A.M > G.M inequality. Can't we apply it here.

Archit Tripathi - 4 years, 9 months ago

Log in to reply

Yes, if you can make all terms to be positive.

Chew-Seong Cheong - 4 years, 9 months ago

Oh crap, i forgot if that equation should be "-" i calculated and i forgot to write on "-"

Daniel Sugihantoro - 4 years, 9 months ago

yes you are right !! it seemed like i have seen this somewhere else too.

A Former Brilliant Member - 4 years, 9 months ago

thanks for mentioning same other problems

Razing Thunder - 11 months, 1 week ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...