An algebra problem by Bala vidyadharan

Algebra Level 3

If roots of the quadratic equation x^2+px+q=0 are t a n 30 0 a n d t a n 15 0 { tan30 }^{ 0 } and {tan15} ^{0} respectively then the value of 2+q-p is


The answer is 3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Syed Baqir
Sep 6, 2015

{ x }^{ 2 }+\quad px\quad +\quad q\quad =\quad 0

Sum Of the Roots = \tan { (30) } +\quad \tan { (15) } \quad =\quad -p

Product Of The Roots = \tan { (30) } *\tan { (15) } \quad =\quad q

\therefore \quad 2\quad +\quad q\quad -\quad p\quad = \quad 2\quad +\quad \tan { (30) } *\tan { (15) } \quad +\quad \tan { (30) } +\quad \tan { (15) }

Simplify:

2\quad +\quad \frac { \sqrt { 3 } }{ 3 } *\frac { 2\quad -\quad \sqrt { 3 } }{ 1 } \quad +\quad \frac { \sqrt { 3 } }{ 3 } \quad +\quad \quad 2\quad -\quad \sqrt { 3 } \Rrightarrow \quad 3

Hence Answer : \boxed { 3 }

add t o t h e s t a r t o f u r s o l u t i o n a n d to the start of ur solution and to the end of ur solution

Bala vidyadharan - 5 years, 9 months ago
Ikkyu San
Aug 1, 2015

From

x = tan 3 0 and x = tan 1 5 x = 3 3 and x = 2 3 x 3 3 = 0 and x ( 2 3 ) = 0 \begin{aligned}x=&\ \tan{30^{\circ}}\quad&\text{and}\quad& \quad\quad\quad\quad\quad x&=&\ \tan{15^{\circ}}\\x=&\ \dfrac{\sqrt3}3\quad&\text{and}\quad& \quad\quad\quad\quad\quad x&=&\ 2-\sqrt3\\x-\dfrac{\sqrt3}3=&\ 0\quad&\text{and}\quad& x-(2-\sqrt3)&=&\ 0\end{aligned}

( x 3 3 ) ( x ( 2 3 ) ) = 0 x 2 ( 2 3 ) x ( 3 3 ) x + ( 3 3 ) ( 2 3 ) = 0 x 2 ( 2 3 + 3 3 ) x + ( 2 3 3 3 ) = 0 x 2 ( 2 ( 3 3 3 3 ) ) x + ( 2 3 3 1 ) = 0 x 2 ( 2 2 3 3 ) x + ( 2 3 3 1 ) = 0 x 2 + ( 2 3 3 2 ) x + ( 2 3 3 1 ) = 0 \begin{aligned}\left(x-\dfrac{\sqrt3}3\right)(x-(2-\sqrt3))=&\ 0\\x^2-(2-\sqrt3)x-\left(\dfrac{\sqrt3}3\right)x+\left(\dfrac{\sqrt3}3\right)(2-\sqrt3)=&\ 0\\x^2-\left(2-\sqrt3+\dfrac{\sqrt3}3\right)x+\left(\dfrac{2\sqrt3-3}3\right)=&\ 0\\x^2-\left(2-\left(\dfrac{3\sqrt3-\sqrt3}3\right)\right)x+\left(\dfrac{2\sqrt3}3-1\right)=&\ 0\\x^2-\left(2-\dfrac{2\sqrt3}3\right)x+\left(\dfrac{2\sqrt3}3-1\right)=&\ 0\\x^2+\left(\dfrac{2\sqrt3}3-2\right)x+\left(\dfrac{2\sqrt3}3-1\right)=&\ 0\end{aligned}

Thus, p = 2 3 3 2 p=\dfrac{2\sqrt3}3-2 and q = 2 3 3 1 q=\dfrac{2\sqrt3}3-1

Hence,

2 + q p = 2 + ( 2 3 3 1 ) ( 2 3 3 2 ) = 2 + 2 3 3 1 2 3 3 + 2 = 3 \begin{aligned}2+q-p=&\ 2+\left(\dfrac{2\sqrt3}3-1\right)-\left(\dfrac{2\sqrt3}3-2\right)\\=&\ 2+\dfrac{2\sqrt3}3-1-\dfrac{2\sqrt3}3+2=\boxed3\end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...