NMTC 2015

Algebra Level 2

a a + b b ( a + b ) ( a b ) + 2 b a + b a b a b \large{\dfrac { a\sqrt { a } +b\sqrt { b } }{ (\sqrt { a } +\sqrt { b } ) (a-b) } + \dfrac { 2\sqrt { b } }{ \sqrt { a } +\sqrt { b } } -\dfrac { \sqrt { ab } }{ a-b }}

If a = 2015 a=2015 and b = 2016 b=2016 , find the value of the expression above.

1 0 2016 \sqrt { 2016 } ( 2015 ) 2 { (2015) }^{ 2 }

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Aaaaa Bbbbb
Aug 24, 2015

a a + b b + 2 b ( a b ) a b ( a + b ) a\sqrt{a}+b\sqrt{b}+2\sqrt{b}(a-b)-\sqrt{ab}(\sqrt{a}+\sqrt{b}) a a + b b + 2 a b 2 b b a b b a a\sqrt{a}+b\sqrt{b}+2a\sqrt{b}-2b\sqrt{b}-a\sqrt{b}-b\sqrt{a} a a b b + a b b a a\sqrt{a}-b\sqrt{b}+a\sqrt{b}-b\sqrt{a} a ( a b ) + b ( a b ) = ( a b ) ( a + b ) \sqrt{a}(a-b)+\sqrt{b}(a-b)=(a-b)(\sqrt{a}+\sqrt{b}) r e s = 1 \Rightarrow res=\boxed{1}

Shreeprada Hegde
Aug 29, 2015

To solve this question take L.C.M of the denominator.that is( √a+√b)(a-b).And solve the equation that you get after taking L.C.M.You get neumartor and denominator same.So answer is 1

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...