An algebra problem by bhakti dongerkery

Algebra Level 2

Solve the inequality 1 2 x + 3 < 2 x 6 \dfrac{1}{2}x + 3 < 2x - 6 for x x .

x < 6 x < 6 x < 6 5 x < -\frac65 x > 6 x > 6 x > 5 6 x > -\frac56

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Mahdi Raza
Jun 8, 2020

1 2 x + 3 < 2 x 6 x + 6 < 4 x 12 Multiply by 2 3 x < 18 3 x > 18 Sign Changes \begin{aligned} \dfrac{1}{2}x + 3 &< 2x - 6 \\ x + 6 &< 4x - 12 &\color{#3D99F6}{\text{Multiply by 2}} \\ -3x&<-18 \\ 3x&>18 &\color{#3D99F6}{\text{Sign Changes}} \end{aligned}

x > 6 \boxed{x>6}

x 2 + 3 < 2 x 6 \dfrac{x}{2} + 3 < 2x - 6

\(\dfrac{3x}{2} > 9

\)

3 x > 18 3x > 18

x > 6 \boxed{x > 6}

Sagar Shah
Nov 21, 2015

We have,

x/2 + 3 < 2x - 6

=> 6 + 3 < 2x - x/2

=> 9 < 3x/2

=> 18 < 3x

=> 6 < x or x > 6.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...