Sines amplifies cosines

Geometry Level 3

sin x + sin 2 x = 1 cos 12 x + 3 cos 10 x + 3 cos 8 x + cos 6 x 2 = ? \begin{aligned} \sin x + \sin^2 x & = & 1 \\ \cos^{12} x + 3 \cos^{10} x + 3\cos^8 x + \cos^6 x - 2 & = & \ ? \end{aligned}


The answer is -1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Pi Han Goh
Apr 11, 2015

We have sin x = 1 sin 2 x = cos 2 x \sin x = 1- \sin^2 x = \cos^2 x

cos 12 x + 3 cos 10 x + 3 cos 8 x + cos 6 x 2 = ( cos 2 x ) 6 + 3 ( cos 2 x ) 5 + 3 ( cos 2 x ) 4 + ( cos 2 x ) 3 2 = sin 6 x + 3 sin 5 x + 3 sin 4 x + sin 3 x 2 = sin 3 x ( sin 3 x + 3 sin 2 x + 3 sin x + 1 ) 2 = sin 3 x ( sin x + 1 ) 3 2 = ( sin x ( sin x + 1 ) ) 3 2 = ( sin 2 x + sin x ) 3 2 = 1 3 2 = 1 \begin{aligned} & & \cos^{12} x + 3 \cos^{10} x + 3 \cos^8 x + \cos^6 x - 2 \\ & = & \left ( \cos^2 x \right )^6 + 3 \left ( \cos^2 x \right )^5 + 3\left ( \cos^2 x \right )^4 + \left ( \cos^2 x \right )^3 - 2 \\ & = & \sin^6 x + 3\sin^5 x + 3\sin^4 x + \sin^3 x - 2 \\ & = & \sin^3 x \left (\sin^3 x + 3\sin^2 x+ 3\sin x + 1 \right ) - 2 \\ & = & \sin^3 x \ \left (\sin x + 1 \right )^3 - 2 \\ & = & \left ( \sin x (\sin x + 1 ) \right )^3 - 2 \\ & = & \left ( \sin^2 x + \sin x \right )^3 - 2 \\ & = & 1^3 - 2 = \boxed{-1} \\ \end{aligned}

Moderator note:

Nice use of the algebraic identity ( a + b ) 3 = a 3 + 3 a 2 b + 3 a b 2 + b 3 (a+b)^3 = a^3 + 3a^2 b + 3ab^2 + b^3 .

Jonathan Salim
May 8, 2015

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...