In connection with

Algebra Level 2

Evaluate

15 x 3 + 45 x 2 + 10 x 100 ( m o d x + 5 ) 15x^3+45x^2+10x-100 \pmod{ x+5}


The answer is -900.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Aditya Sky
Jun 5, 2016

By Remainder Theorem \color{#3D99F6}{\text{Remainder Theorem}} , we know that that remainder is essentially equal to f ( 5 ) f(-5) , where f ( x ) = 15 x 3 + 45 x 2 + 10 x 100 f(x)\,=\,15x^{3}+45x^{2}+10x-100 .

It turns out that f ( 5 ) = 900 f(-5)\,=\,-900 and hence the answer.

Great ¨ \ddot \smile

Hung Woei Neoh
Jun 5, 2016

15 x 3 + 45 x 2 + 10 x 100 = 15 x 3 + 75 x 2 30 x 2 150 x + 160 x + 800 900 = 15 x 2 ( x + 5 ) 30 x ( x + 5 ) + 160 ( x + 5 ) 900 = ( 15 x 2 30 x + 160 ) ( x + 5 ) 900 15x^3 + 45x^2 + 10x - 100\\ =15x^3 + 75x^2 - 30x^2 - 150 x +160x + 800 - 900\\ =15x^2(x+5) -30x(x+5) + 160(x+5) - 900\\ =(15x^2-30x+160)(x+5) - 900

Therefore,

( 15 x 3 + 45 x 2 + 10 x 100 ) % ( x + 5 ) = 900 (15x^3 + 45x^2 + 10x - 100) \% (x+5) = \boxed{-900}

Great ¨ \ddot \smile

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...