From An Erroneous Problem

Algebra Level 3

Function f : R R f: \mathbb {R \to R} satisfies

f ( x ) + f ( 1 1 x ) = 1 + x \large f(x) + f \left(1-\frac 1x\right) = 1+x

for x 0 x \ne 0 and x 1 x \ne 1 . Then 2017 2 f ( 2017 ) = 1 k ( k 1 ) 2017 - 2f(2017) = \dfrac 1{k(k-1)} , where k k is a positive integer. Find k k .


A corrected problem from Priyanshu Mishra .


The answer is 2017.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Aug 13, 2017

{ f ( x ) + f ( x 1 x ) = 1 + x . . . ( 1 ) f ( x 1 x ) + f ( 1 1 x ) = 1 + x 1 x . . . ( 2 ) f ( 1 1 x ) + f ( x ) = 1 + 1 1 x . . . ( 3 ) \begin{cases} f(x) + f \left(\dfrac {x-1}x \right) = 1+x & ...(1) \\ f \left(\dfrac {x-1}x \right) + f\left(\dfrac 1{1-x} \right) = 1+\dfrac {x-1}x & ...(2) \\ f \left(\dfrac 1{1-x} \right) + f(x) = 1+\dfrac 1{1-x} & ...(3) \end{cases}

From ( 1 ) ( 2 ) + ( 3 ) : (1)-(2)+(3):

2 f ( x ) = 1 + x 1 x 1 x + 1 + 1 1 x = x 1 + 1 x + 1 1 x 1 = x + 1 x 1 x 1 = x 1 x ( x 1 ) \begin{aligned} 2f(x) & = 1+x-1- \frac {x-1}x + 1 + \frac 1{1-x} \\ & = x - 1 + \frac 1x + 1 - \frac 1{x-1} \\ & = x + \frac 1x - \frac 1{x-1} \\ & = x - \frac 1{x(x-1)} \end{aligned}

2017 2 f ( 2017 ) = 1 2017 ( 2017 1 ) \begin{aligned} \implies 2017 - 2f(2017) & = \frac 1{2017(2017-1)}\end{aligned}

k = 2017 \implies k = \boxed{2017} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...