Flipping Signs

Algebra Level 2

A = 1 + 1 2 + 1 4 + 1 8 + 1 16 + 1 32 + 1 64 + B = 1 1 2 + 1 4 1 8 + 1 16 1 32 + 1 64 \begin{aligned} A &= &1 + \dfrac12 + \dfrac14 + \dfrac18 + \dfrac1{16} +\dfrac1{32} + \dfrac1{64} + \cdots \\ B &=& 1- \dfrac12 + \dfrac14 - \dfrac18 + \dfrac1{16} - \dfrac1{32} + \dfrac1{64} - \cdots \end{aligned}

What is the relationship between A A and B B ?

A = 2 B A = 2B A = 3 B A=3B A = 4 B A = 4B A = 5 B A = 5B

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Pranshu Gaba
Sep 5, 2016

Both A A and B B represent infinite geometric progression sum .

A A has a first term a 1 = 1 a_1=1 and a common ratio r 1 = 1 2 r_1= \dfrac12 , by applying the formula of an infinite geometric sum, we have A = a 1 1 r 1 = 1 1 1 2 = 2 A = \dfrac {a_1}{1-r_1} = \dfrac1{1 - \frac12} = 2 .

B B has a first term a 2 = 1 a_2=1 and a common ratio r 2 = 1 2 r_2= -\dfrac12 , by applying the formula of an infinite geometric sum, we have B = a 2 1 r 2 = 1 1 + 1 2 = 1 3 2 = 2 3 B = \dfrac {a_2}{1-r_2} = \dfrac1{1 + \frac12} = \dfrac1{\frac32} = \dfrac23 .

Hence, 3 B = 2 = A 3B = 2 = A .

Notice that both A A and B B can be evaluated because both their common ratio are in the interval 1 < r < 1 -1 < r < 1 .

Chew-Seong Cheong
Aug 30, 2016

Relevant wiki: Geometric Progression Sum

A = 1 + 1 2 + 1 4 + 1 8 + 1 16 + 1 32 + . . . = n = 0 ( 1 2 ) n This is a sum of infinite GP = 1 1 1 2 = 2 \begin{aligned} A & = 1 + \frac 12 + \frac 14 + \frac 18 + \frac 1{16} + \frac 1{32} + ... \\ & = \sum_{n=0}^\infty \left( \frac 12\right)^n & \small \color{#3D99F6}{\text{This is a sum of infinite GP}} \\ & = \frac 1{1-\frac 12} = 2 \end{aligned}

B = 1 1 2 + 1 4 1 8 + 1 16 1 32 + . . . = 1 + 1 4 + 1 16 + . . . ( 1 2 + 1 8 + 1 32 + . . . ) = 1 + 1 4 + 1 16 + . . . 1 2 ( 1 + 1 4 + 1 16 + . . . ) = 1 2 ( 1 + 1 4 + 1 16 + . . . ) = 1 2 n = 0 ( 1 4 ) n = 1 2 1 1 1 4 = 2 3 \begin{aligned} B & = 1 - \frac 12 + \frac 14 - \frac 18 + \frac 1{16} - \frac 1{32} + ... \\ & = 1 + \frac 14 + \frac 1{16} + ... - \left(\frac 12 + \frac 18 + \frac 1{32} + ... \right) \\ & = 1 + \frac 14 + \frac 1{16} + ... - \frac 12 \left(1 + \frac 14 + \frac 1{16} + ... \right) \\ & = \frac 12 \left(1 + \frac 14 + \frac 1{16} + ... \right) \\ & = \frac 12 \sum_{n=0}^\infty \left( \frac 14\right)^n \\ & = \frac 12 \cdot \frac 1{1-\frac 14} = \frac 23 \end{aligned}

A = 3 B \implies \boxed{A=3B}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...