There are so many

20102011 2012 = a + 1 b + 1 c + 1 d + 1 e + 1 f + 1 g \Large \frac{20102011}{2012} = a + \frac{1}{b + \frac{1}{c + \frac{1}{d + \frac{1}{e + \frac{1}{f + \frac 1g} } }}}

If a , b , c , d , e , f , g a,b,c,d,e,f,g are positive integers that fulfill the equation above, find the value of a b + c d + e f + g a-b+c-d+e-f+g .


The answer is 9966.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
May 12, 2015

20102011 2012 = 9991 + 119 2012 = 9991 + 1 2012 119 = 9991 + 1 16 + 108 119 = 9991 + 1 16 + 1 119 108 = 9991 + 1 16 + 1 1 + 11 108 = 9991 + 1 16 + 1 1 + 1 108 11 = 9991 + 1 16 + 1 1 + 1 9 + 9 11 = 9991 + 1 16 + 1 1 + 1 9 + 1 11 9 = 9991 + 1 16 + 1 1 + 1 9 + 1 1 + 2 9 = 9991 + 1 16 + 1 1 + 1 9 + 1 1 + 1 9 2 = 9991 + 1 16 + 1 1 + 1 9 + 1 1 + 1 4 + 1 2 \begin{aligned} \dfrac{20102011}{2012} & = 9991 + \frac{119}{2012} = 9991+\frac{1}{\frac{2012}{119}} \\ & = 9991+\frac{1}{16 + \frac{108}{119}} = 9991+\frac{1}{16+\frac{1}{\frac{119}{108}}} \\ & = 9991+\frac{1}{16+\frac{1}{1 + \frac{11}{108}}} = 9991+\frac{1}{16+\frac{1}{1+\frac{1}{\frac{108}{11}}}} \\ & = 9991+\frac{1}{16+\frac{1}{1+\frac{1}{9+\frac{9}{11}}}} = 9991+\frac{1}{16+\frac{1}{1+\frac{1}{9+\frac{1}{\frac{11}{9}}}}} \\ & = 9991+\frac{1}{16+\frac{1}{1+\frac{1}{9+\frac{1}{1+\frac{2}{9}}}}} = 9991+\frac{1}{16+\frac{1}{1+\frac{1}{9+\frac{1}{1+\frac{1}{\frac{9}{2}}}}}} \\ & = 9991+\dfrac{1}{16+\dfrac{1}{1+\dfrac{1}{9+\dfrac{1}{1+\dfrac{1}{4 + \dfrac{1}{2}}}}}} \end{aligned}

a b + c d + e f + g = 9991 16 + 1 9 + 1 4 + 2 = 9966 \Rightarrow a-b+c-d+e-f+g = 9991-16+1-9+1-4+2 = \boxed{9966}

Moderator note:

Can you prove that the values of a , b , c , d , e , f , g a,b,c,d,e,f,g are unique?

nice solution

Vighnesh Raut - 6 years, 1 month ago

Relevant wiki: https://brilliant.org/wiki/continued-fractions/

Rico Lee - 4 years, 7 months ago
Rico Lee
Oct 22, 2016

Read up on continued fractions to solve this using Mr. Cheong's method.

Pranjal Jain
Jun 11, 2015

Python 3.4.2

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
def convergents(num,den):
    a=[]
    if den==1:
        a.append(num)
        return a
    else:
        a.append(num//den)
        return a+convergents(den,num%den)
print(convergents(20102011,2012)) #Returns the list [9991, 16, 1, 9, 1, 4, 2]
9991-16+1-9+1-4+2 #Returns 9966

PS: This is a function from my library which is provided 'as-is'. Thus, I had to calculate a b + c d + e f + g a-b+c-d+e-f+g manually.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...