Roots Relation

Algebra Level 5

24 x 4 15 x 3 + 1 \large 24x^4 - 15x^3 + 1

Let a , b , c , d a,b,c,d be the roots of the polynomial above. If ( a b c ) 3 + ( a b d ) 3 + ( a c d ) 3 + ( b c d ) 3 = p q (abc)^3+(abd)^3+(acd)^3+(bcd)^3 = \frac pq for coprime positive integers p , q p,q , find the value of p + q p+q .

Image Credit: Wikimedia William Anthony Granville .


The answer is 1541.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Danish Ahmed
Jun 18, 2015

A polynomial g ( x ) g(x) with roots 1 a \dfrac{1}{a} , 1 b \dfrac{1}{b} , 1 c \dfrac{1}{c} and 1 d \dfrac{1}{d} will be g ( x ) = x 4 15 x + 24 g(x)=x^4-15x+24 .

Using Newton Sums, we get that ( 1 a 3 + 1 b 3 + 1 c 3 + 1 d 3 ) 45 = 0 \left(\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}+\dfrac{1}{d^3}\right)-45=0 , or

( a b c ) 3 + ( a b d ) 3 + ( a c d ) 3 + ( b c d ) 3 a 3 b 3 c 3 d 3 = 45 \dfrac{\left(abc\right)^3+\left(abd\right)^3+\left(acd\right)^3+\left(bcd\right)^3}{a^3b^3c^3d^3}=45 .

In addition, from Vieta's Formulae on f ( x ) f(x) , we get that a b c d = 1 24 abcd=\dfrac{1}{24} , so a 3 b 3 c 3 d 3 = 1 13824 a^3b^3c^3d^3=\dfrac{1}{13824} .

Plugging this in, we get that

( a b c ) 3 + ( a b d ) 3 + ( a c d ) 3 + ( b c d ) 3 = 45 13824 = 5 1536 \left(abc\right)^3+\left(abd\right)^3+\left(acd\right)^3+\left(bcd\right)^3=\dfrac{45}{13824}=\dfrac{5}{1536} .

Can you guide me through the logic of your first statement?

Ryan Tamburrino - 5 years, 11 months ago

Log in to reply

Let a,b,c,d be the roots of equation 24x^4 -15x^3 + 1 = 0. Then x=a,b,c,d. Therefore if I want the equation with roots 1/a ,1/b,1/c,1/d replace x by 1/x (x=a or 1/x = 1/a) . Therefore the new equation will be x^4 - 15 + 1=0.

Rutvik Doshi - 5 years, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...