An algebra problem by Darel Gunawan

Algebra Level 3

Given that : 1 2 3 2 + 1 3 3 3 + 1 4 3 4 + + 1 10 0 3 100 = a b \frac{1}{2^3-2} +\frac{1}{3^3-3}+\frac{1}{4^3-4}+ \cdots +\frac{1}{100^3-100} = \frac{a}{b}

where a a and b b are coprime positive integers. What is the value of a + b a+b ?


The answer is 25249.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Anže Hočevar
Jan 3, 2019

The problem can be written as i = 2 n 1 x 3 x \displaystyle{\sum_{i=2}^n \frac{1}{x^3-x}} .

Observe, that 1 x 3 x = 1 x ( x + 1 ) ( x 1 ) \displaystyle{\frac{1}{x^3-x} = \frac{1}{x(x+1)(x-1)}} . We can now do partial fraction decomposition and split this fraction into: 1 x 3 x = 1 x + 1 2 ( 1 x + 1 + 1 x 1 ) \displaystyle{ \frac{1}{x^3-x} = -\frac{1}{x} + \frac{1}{2} \left(\frac{1}{x+1} + \frac{1}{x-1}\right)}

Now the problem is equivalent to i = 2 n 1 x + 1 2 ( i = 2 n 1 x + 1 + i = 2 n 1 x 1 ) - \displaystyle{\sum_{i=2}^n \frac{1}{x}} + \frac{1}{2} \cdot \left(\displaystyle{\sum_{i=2}^n \frac{1}{x+1}} + \displaystyle{\sum_{i=2}^n \frac{1}{x-1}} \right) .

Consider i = 2 n 1 x \displaystyle{\sum_{i=2}^n \frac{1}{x}} . Let this sum be equal to z z .

Observe that i = 2 n 1 x + 1 = z 1 2 + 1 n + 1 \displaystyle{\sum_{i=2}^n \frac{1}{x+1}} = z - \frac{1}{2} + \frac{1}{n+1} and that i = 2 n 1 x 1 = z + 1 1 n \displaystyle{\sum_{i=2}^n \frac{1}{x-1}} = z + 1 - \frac{1}{n} .

Now we can write: i = 2 n 1 x 3 x = z + 1 2 ( 2 z + 1 m + 1 1 m + 1 1 2 ) = 1 2 ( 1 m + 1 1 m + 1 2 ) \displaystyle{\sum_{i=2}^n \frac{1}{x^3-x}} = -z + \frac{1}{2}\left(2z + \frac{1}{m+1} - \frac{1}{m} + 1 - \frac{1}{2} \right) = \frac{1}{2} \left(\frac{1}{m+1} - \frac{1}{m} + \frac{1}{2}\right) .

Now we find the common denominator and do some factoring to get: i = 2 n 1 x 3 x = ( m + 2 ) ( m 1 ) 4 m ( m + 1 ) \boxed{\displaystyle{\sum_{i=2}^n \frac{1}{x^3-x}} = \frac{(m+2)(m-1)}{4m(m+1)}} . When m = 100 m = 100 the fraction evaluates to 5049 20200 \frac{5049}{20200} . So our final solution is 5049 + 20200 = 25249 5049 + 20200 = 25249 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...