Inspired by Yan Shee

Algebra Level 4

n = 1 n 2 + n 2 × 1 0 n \large \sum_{n = 1} ^\infty \dfrac{n^2 + n}{2 \times 10^n}

The value of the infinite series above can be expressed in the form a b \dfrac{a}{b} , where a a and b b are positive coprime integers. Find a + b a+b .


The answer is 829.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Ikkyu San
Apr 6, 2016

n = 1 n 2 + n 2 1 0 n = n = 1 ( 1 2 n 2 + n 1 0 n ) = 1 2 n = 1 ( n 2 1 0 n + n 1 0 n ) = 1 2 ( n = 1 n 2 1 0 n + n = 1 n 1 0 n ) \displaystyle\sum_{n=1}^{\infty}\dfrac{n^2+n}{2\cdot10^n}=\displaystyle\sum_{n=1}^{\infty}\left(\dfrac12\cdot\dfrac{n^2+n}{10^n}\right)=\dfrac12\displaystyle\sum_{n=1}^{\infty}\left(\dfrac{n^2}{10^n}+\dfrac{n}{10^n}\right)=\dfrac12\left(\color{#20A900}{\displaystyle\sum_{n=1}^{\infty}\dfrac{n^2}{10^n}}+\color{teal}{\displaystyle\sum_{n=1}^{\infty}\dfrac{n}{10^n}}\right)

Let A = n = 1 n 2 1 0 n = 1 10 + 4 1 0 2 + 9 1 0 3 + 16 1 0 4 + ( 1 ) \color{#20A900}{A=\displaystyle\sum_{n=1}^{\infty}\dfrac{n^2}{10^n}=\dfrac1{10}+\dfrac4{10^2}+\dfrac9{10^3}+\dfrac{16}{10^4}+\cdots}\Rightarrow(1)

Multiplying both sides with 1 10 \dfrac1{10}

1 10 A = 1 1 0 2 + 4 1 0 3 + 9 1 0 4 + 16 1 0 5 + ( 2 ) \dfrac1{10}A=\dfrac1{10^2}+\dfrac4{10^3}+\dfrac9{10^4}+\dfrac{16}{10^5}+\cdots\Rightarrow(2)

Subtracting equation ( 1 ) (1) with equation ( 2 ) (2)

9 10 A = 1 10 + 3 1 0 2 + 5 1 0 3 + 7 1 0 4 + ( 3 ) \dfrac9{10}A=\dfrac1{10}+\dfrac3{10^2}+\dfrac5{10^3}+\dfrac7{10^4}+\cdots\Rightarrow(3)

Multiplying both sides with 1 10 \dfrac1{10}

9 100 A = 1 1 0 2 + 3 1 0 3 + 5 1 0 4 + 7 1 0 5 + ( 4 ) \dfrac9{100}A=\dfrac1{10^2}+\dfrac3{10^3}+\dfrac5{10^4}+\dfrac7{10^5}+\cdots\Rightarrow(4)

Subtracting equation ( 3 ) (3) with equation ( 4 ) (4)

81 100 A = 1 10 + 2 1 0 2 + 2 1 0 3 + 2 1 0 4 + 81 100 A = 1 10 + 2 1 0 2 1 1 10 81 100 A = 1 10 + ( 1 50 × 10 9 ) 81 100 A = 1 10 + 1 45 A = 9 + 2 90 × 100 81 = 110 729 \begin{aligned}\dfrac{81}{100}A=&\dfrac1{10}+\dfrac2{10^2}+\dfrac2{10^3}+\dfrac2{10^4}+\cdots\\\dfrac{81}{100}A=&\dfrac1{10}+\dfrac{\frac2{10^2}}{1-\frac1{10}}\\\dfrac{81}{100}A=&\dfrac1{10}+\left(\dfrac1{50}\times\dfrac{10}9\right)\\\dfrac{81}{100}A=&\dfrac1{10}+\dfrac1{45}\\\color{#20A900}{A=}&\color{#20A900}{\dfrac{9+2}{90}\times\dfrac{100}{81}=\dfrac{110}{729}}\end{aligned}

Let B = n = 1 n 1 0 n = 1 10 + 2 1 0 2 + 3 1 0 3 + 4 1 0 4 + ( 5 ) \color{teal}{B=\displaystyle\sum_{n=1}^{\infty}\dfrac{n}{10^n}=\dfrac1{10}+\dfrac2{10^2}+\dfrac3{10^3}+\dfrac4{10^4}+\cdots}\Rightarrow(5)

Multiplying both sides with 1 10 \dfrac1{10}

1 10 B = 1 1 0 2 + 2 1 0 3 + 3 1 0 4 + 4 1 0 5 + ( 6 ) \dfrac1{10}B=\dfrac1{10^2}+\dfrac2{10^3}+\dfrac3{10^4}+\dfrac4{10^5}+\cdots\Rightarrow(6)

Subtracting equation ( 5 ) (5) with equation ( 6 ) (6)

9 10 B = 1 10 + 1 1 0 2 + 1 1 0 3 + 1 1 0 4 + 9 10 B = 1 10 1 1 10 B = 1 10 × 10 9 × 10 9 = 10 81 \begin{aligned}\dfrac9{10}B=&\dfrac1{10}+\dfrac1{10^2}+\dfrac1{10^3}+\dfrac1{10^4}+\cdots\\\dfrac9{10}B=&\dfrac{\frac1{10}}{1-\frac1{10}}\\\color{teal}{B=}&\color{teal}{\dfrac1{10}\times\dfrac{10}9\times\dfrac{10}9=\dfrac{10}{81}}\end{aligned}

Thus, n = 1 n 2 + n 2 1 0 n = 1 2 ( 110 729 + 10 81 ) = 1 2 ( 110 + 90 729 ) = 100 729 \displaystyle\sum_{n=1}^{\infty}\dfrac{n^2+n}{2\cdot10^n}=\dfrac12\left(\color{#20A900}{\dfrac{110}{729}}+\color{teal}{\dfrac{10}{81}}\right)=\dfrac12\left(\dfrac{110+90}{729}\right)=\dfrac{100}{729}

Hence, a + b = 100 + 729 = 829 a+b=100+729=\boxed{829}

Tedious but nice

Aryan Gaikwad - 5 years, 2 months ago

S = n = 1 n 2 + n 2 × 1 0 n = n = 1 1 1 0 n × n ( n + 1 ) 2 = n = 1 k = 1 n k 1 0 n = 1 n = 1 1 1 0 n + 2 n = 2 1 1 0 n + 3 n = 3 1 1 0 n + 4 n = 4 1 1 0 n + . . . = 1 10 n = 0 1 1 0 n + 2 1 0 2 n = 0 1 1 0 n + 3 1 0 3 n = 0 1 1 0 n + 4 1 0 4 n = 0 1 1 0 n + . . . = 1 1 1 10 n = 1 n 1 0 n = 10 9 × 1 10 n = 1 n 1 0 n 1 = 1 9 n = 1 d x n d x x = 1 10 = 1 9 × d d x n = 1 x n = 1 9 × d d x ( x 1 x ) = 1 9 × 1 ( 1 x ) 2 Putting back x = 1 10 = 100 729 \begin{aligned} S & = \sum_{n=1}^\infty \frac{n^2+n}{2 \times 10^n} \\ & = \sum_{n=1}^\infty \frac{1}{10^{n}} \times \color{#3D99F6}{\frac{n(n+1)}{2}} \\ & = \sum_{n=1}^\infty \frac{\small{\color{#3D99F6}{ \displaystyle \sum_{k=1}^n k}}}{10^{n}} \\ & = \color{#3D99F6}{1} \sum_{n=\color{#D61F06}{1}}^\infty \frac{1}{10^n} + \color{#3D99F6}{2} \sum_{n=\color{#D61F06}{2}}^\infty \frac{1}{10^n} + \color{#3D99F6}{3} \sum_{n=\color{#D61F06}{3}}^\infty \frac{1}{10^n} + \color{#3D99F6}{4} \sum_{n=\color{#D61F06}{4}}^\infty \frac{1}{10^n} + ... \\ & =\frac{\color{#3D99F6}{1}}{\color{#D61F06}{10}} \sum_{n=\color{#D61F06}{0}}^\infty \frac{1}{10^n} + \frac{\color{#3D99F6}{2}}{\color{#D61F06}{10^2}} \sum_{n=\color{#D61F06}{0}}^\infty \frac{1}{10^n} + \frac{\color{#3D99F6}{3}}{\color{#D61F06}{10^3}} \sum_{n=\color{#D61F06}{0}}^\infty \frac{1}{10^n} + \frac{\color{#3D99F6}{4}}{\color{#D61F06}{10^4}} \sum_{n=\color{#D61F06}{0}}^\infty \frac{1}{10^n} + ... \\ & = \frac{1}{1-\frac{1}{10}} \sum_{n=1}^\infty \frac{n}{10^{n}} \\ & = \frac{10}{9} \times \frac{1}{10} \sum_{n=1}^\infty \frac{n}{10^{n-1}} \\ & = \frac{1}{9} \sum_{n=1}^\infty \frac{d x^n}{dx} \quad \quad \small \color{#3D99F6}{x = \frac{1}{10}} \\ & = \frac{1}{9} \times \frac{d}{dx} \sum_{n=1}^\infty x^n \\ & = \frac{1}{9} \times \frac{d}{dx} \left(\frac{x}{1-x}\right) \\ & = \frac{1}{9} \times \frac{1}{(1-x)^2} \quad \quad \small \color{#3D99F6}{\text{Putting back }x = \frac{1}{10}} \\ & = \frac{100}{729} \end{aligned}

a + b = 100 + 729 = 829 \Rightarrow a + b = 100 + 729 = \boxed{829}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...