Calculator Isn't Needed

Algebra Level 1

201 6 8 201 6 5 201 6 7 + 201 6 6 + 201 6 5 \large \dfrac{2016^{8} - 2016^5}{2016^{7} + 2016^{6} + 2016^5}

2015 2016 2017 2018 2019 2020

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

x 8 x 5 x 7 + x 6 + x 5 \frac{x^8-x^5}{x^7+x^6+x^5} = = x 5 ( x 3 1 ) x 5 ( x 2 + x + 1 \frac{x^5(x^3-1)}{x^5(x^2+x+1} = = ( x 1 ) ( x 2 + x + 1 ) ( x 2 + x + 1 ) \frac{(x-1)(x^2+x+1)}{(x^2+x+1)} = = x 1 x-1

If x = 2016 x=2016 then x 1 = 2015 x-1=2015

Thus 201 6 8 201 6 5 201 6 7 + 201 6 6 + 201 6 5 \frac{2016^8-2016^5}{2016^7+2016^6+2016^5} = = 2015 2015

Rishabh Jain
Apr 4, 2016

Taking 201 6 5 2016^5 from both numerator and denominator:

201 6 3 ( n 1 ) 1 201 6 2 ( n 1 ) + 201 6 ( n 1 ) + 1 \dfrac{2016^{3(n-1)}-1}{2016^{2(n-1)}+2016^{(n-1)}+1}

= ( 201 6 ( n 1 ) ) 3 1 ( 201 6 ( n 1 ) ) 2 + 201 6 ( n 1 ) + 1 =\dfrac{(\color{#D61F06}{2016^{(n-1)}})^3-1}{(\color{#D61F06}{2016^{(n-1)}})^2+\color{#D61F06}{2016^{(n-1)}} +1 }

Substitute 201 6 ( n 1 ) = t \color{#D61F06}{2016^{(n-1)}}=\color{#D61F06}{t} and using the identity a 3 1 = ( a 1 ) ( a 2 + a + 1 ) a^3-1=(a-1)(a^2+a+1) or a 3 1 a 2 + a + 1 = a 1 \dfrac{a^3-1}{a^2+a+1}=a-1 s.t expression simplifies to:

= 201 6 ( n 1 ) 1 =\large{2016^{(n-1)}-1}

For n = 2 n=2 , this is simply:

= 2015 \huge = \boxed{2015}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...