How fast can you multiply?

Algebra Level 2

( 1 1 10 ) ( 1 1 11 ) ( 1 1 12 ) ( 1 1 100 ) = ? \displaystyle \left( 1 - \frac{1}{\color{teal}{10}}\right)\left(1 - \frac{1}{\color{teal}{11}}\right)\left(1 - \frac{1}{\color{teal}{12}}\right)\cdots\left(1 - \frac{1}{\color{teal}{100}}\right)= \ ?


The answer is 0.09.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

6 solutions

Prasun Biswas
Feb 7, 2015

An informal solution: \large \textrm{An informal solution:}

Expanding out the expression gives us,

9 10 × 10 11 × × 98 99 × 99 100 \frac{9}{10}\times \frac{10}{11}\times \cdots \times \frac{98}{99}\times \frac{99}{100}

After cancellation of like terms, we are left with the answer 9 100 = 0.09 \dfrac{9}{100}=\boxed{0.09}


The same solution (Presented in a formal manner): \large \textrm{The same solution (Presented in a formal manner):}

The given product can be expressed and evaluated using product notation as follows:

i = 10 100 ( 1 1 i ) = i = 10 100 ( i 1 i ) = i = 10 100 ( i 1 ) i = 10 100 i = 9 × i = 10 99 i 100 × i = 10 99 i = 9 100 = 0.09 \displaystyle \prod_{i=10}^{100} \left(1-\dfrac{1}{i}\right)=\displaystyle \prod_{i=10}^{100} \left(\dfrac{i-1}{i}\right)=\frac{\displaystyle \prod_{i=10}^{100}\left(i-1\right)}{\displaystyle \prod_{i=10}^{100}i}=\frac{9\times \displaystyle \prod_{i=10}^{99}i}{100\times \displaystyle \prod_{i=10}^{99}i}=\dfrac{9}{100}=\boxed{0.09}

Aha! On my phone only first three factors are shown, not even any hint regarding how many of them are there, so I was very intrigued when 0.75 turned out to be wrong))

Dmitry Kobyakov - 1 year, 11 months ago

Same here...and couldn't swipe right to extend :(

Thomas Chestnutt - 1 year, 11 months ago

Same here, I couldn't see the rest. 😂

Marco Scapelitte - 1 year, 8 months ago

I too could neither see the question nor get any hint of how many terms were there

Giri V K - 1 year, 8 months ago
Thiago Martinoni
Feb 7, 2015

( 1 1 / 10 ) ( 1 1 / 11 ) ( 1 1 / 12 ) . . . ( 1 1 / 99 ) ( 1 1 / 100 ) = ( 9 10 ) ( 10 11 ) ( 11 12 ) . . . ( 98 99 ) ( 99 100 ) = 99 × 98 × 97 × . . . 10 × 9 100 × 99 × 98 × . . . 11 × 10 = 99 ! 8 ! 100 ! 9 ! = 99 ! 9 ! 100 ! 8 ! = 0.09 1-1/10)(1-1/11)(1-1/12)...(1-1/99)(1-1/100)=\\ \left( \frac { 9 }{ 10 } \right) \left( \frac { 10 }{ 11 } \right) \left( \frac { 11 }{ 12 } \right) ...\left( \frac { 98 }{ 99 } \right) \left( \frac { 99 }{ 100 } \right) =\\ \frac { 99\times 98\times 97\times ...10\times 9 }{ 100\times 99\times 98\times ...11\times 10 } =\\ \frac { \frac { 99! }{ 8! } }{ \frac { 100! }{ 9! } } =\quad \frac { 99!9! }{ 100!8! } \quad =\quad { 0.09 }

99!9!/100!8! is not correct

Syed Hamza Khalid - 4 years, 3 months ago
Zeeshan Ali
Feb 7, 2015

the given sequence can be written as:
(9/10)(10/11)(11/12)........(98/99)(99/100)
= 9/100 = 0.09

Edil Tizon
Feb 5, 2015

=(1 - 1/10)(1 - 1/11)(1 - 1/12)...(1 - 1/99)(1 - 1/100) = (9/10)(10/11)(11/12)...(98/99)(99/100) = 9/100 : simplify final answer=0.09

William Isoroku
Feb 7, 2015

It's a telescopic sequence once simplified.

Rikki Traballo
Aug 13, 2016

Another Solution (By using AM-GM inequalities)

let a i a_{i} = (1- 1 9 + i \frac{1}{9+i} ) this simplifies to a i a_{i} = ( 8 + i 9 + i \frac{8+i}{9+i} )

n=91

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...