An algebra problem about minimum value

Algebra Level 3

( a + 1 ) ( b + 1 ) ( c + 1 ) ( 1 a + 1 ) ( 1 b + 1 ) ( 1 c + 1 ) (a + 1)(b+ 1)(c+ 1) \left(\dfrac1a + 1\right)\left(\dfrac1b + 1\right)\left(\dfrac1c + 1\right)

Let a , b a,b and c c be positive numbers. Find the minimum value of the expression above.


The answer is 64.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
Jul 25, 2016

( a + 1 ) ( b + 1 ) ( c + 1 ) ( 1 a + 1 ) ( 1 b + 1 ) ( 1 c + 1 ) = ( a + 1 ) ( b + 1 ) ( c + 1 ) ( 1 + a a ) ( 1 + b b ) ( 1 + c c ) = ( ( 1 + a ) 2 a ) ( ( 1 + b ) 2 b ) ( ( 1 + c ) 2 c ) = ( 1 a + 2 + a ) ( 1 b + 2 + b ) ( 1 c + 2 + c ) By AM-GM inequality: 1 a + a 2 ( 2 + 2 ) ( 2 + 2 ) ( 2 + 2 ) = 64 (a+1)(b+1)(c+1)\left(\dfrac 1a + 1 \right)\left(\dfrac 1b + 1 \right)\left(\dfrac 1c + 1 \right) \\ = (a+1)(b+1)(c+1)\left(\dfrac {1+a}a \right)\left(\dfrac {1+b}b \right)\left(\dfrac {1+c}c \right) \\ = \left(\dfrac {(1+a)^2}a \right)\left(\dfrac {(1+b)^2}b \right)\left(\dfrac {(1+c)^2}c \right) \\ = \left(\color{#3D99F6}{\dfrac 1a} + 2 + \color{#3D99F6}{a} \right)\left(\color{#3D99F6}{\dfrac 1b} + 2 + \color{#3D99F6}{b} \right)\left(\color{#3D99F6}{\dfrac 1c} + 2 + \color{#3D99F6}{c} \right) \quad \quad \small \color{#3D99F6}{\text{By AM-GM inequality: }\dfrac 1a + a \ge 2} \\ \color{#3D99F6}{\ge} \left(\color{#3D99F6}{2} + 2 \right) \left(\color{#3D99F6}{2} + 2 \right) \left(\color{#3D99F6}{2} + 2 \right) = \boxed{64}

Manuel Kahayon
Jul 25, 2016

Use Holder's inequality...

( a + 1 ) 1 6 ( b + 1 ) 1 6 ( c + 1 ) 1 6 ( 1 a + 1 ) 1 6 ( 1 b + 1 ) 1 6 ( 1 c + 1 ) 1 6 a b c a b c 6 + 1 6 \large (a+1)^{\frac{1}{6}}(b+1)^{\frac{1}{6}}(c+1)^{\frac{1}{6}}(\frac{1}{a}+1)^{\frac{1}{6}}(\frac{1}{b}+1)^{\frac{1}{6}}(\frac{1}{c}+1)^{\frac{1}{6}} \geq \sqrt[6]{\frac{abc}{abc}} + \sqrt[6]{1}

Giving us ( a + 1 ) ( b + 1 ) ( c + 1 ) ( 1 a + 1 ) ( 1 b + 1 ) ( 1 c + 1 ) 6 2 \large \sqrt[6]{(a+1)(b+1)(c+1)(\frac{1}{a}+1)(\frac{1}{b}+1)(\frac{1}{c}+1)} \geq 2

Raising both sides to the 6th power gives us

( a + 1 ) ( b + 1 ) ( c + 1 ) ( 1 a + 1 ) ( 1 b + 1 ) ( 1 c + 1 ) 64 (a+1)(b+1)(c+1)(\frac{1}{a}+1)(\frac{1}{b}+1)(\frac{1}{c}+1) \geq \boxed{64} .

Aaryan Maheshwari
Aug 22, 2017

We want a+1,b+1&c+1 to be minimum. Since a,b and c are positive, we have a=b=c=1, giving the value 64.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...