Adding I

Calculus Level 3

n = 0 n 2 2 n = ? \large \sum_{n=0}^{\infty}{\frac{n^2}{2^n}} = \, ?


The answer is 6.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Alex G
Apr 3, 2016

n = 0 r n = 1 1 r , 1 r < 1 \sum \limits_{n=0} ^ {\infty}{{r} ^ {n}} = \frac {1} {1 -r}, -1 \leq r < 1

Deriving both sides with respect to r r .

n = 0 n r n 1 = 1 ( 1 r ) 2 , 1 r < 1 \sum \limits_{n=0} ^ {\infty}{n{r} ^ {n-1}} = \frac {1} {{(1 -r)} ^ {2}}, -1 \leq r < 1

n = 0 n r n = r ( 1 r ) 2 , 1 r < 1 \sum \limits_{n=0} ^ {\infty}{n{r} ^ {n}} = \frac {r} {{(1 -r)} ^ {2}}, -1 \leq r < 1

Deriving again

n = 0 n 2 r n 1 = 1 + r ( 1 r ) 3 , 1 r < 1 \sum \limits_{n=0} ^ {\infty}{ {n} ^ {2} {r} ^ {n-1}} = \frac {1+r} {{(1 -r)} ^ {3}}, -1 \leq r < 1

n = 0 n 2 r n = r + r 2 ( 1 r ) 3 , 1 r < 1 \sum \limits_{n=0} ^ {\infty}{ {n} ^ {2} {r} ^ {n}} = \frac {r+{r} ^ {2}} {{(1 -r)} ^ {3}}, -1 \leq r < 1

Plugging in r = 1 2 r = \frac{1}{2} yields 6 6 .

n = 0 n 2 2 n = n = 1 n 2 2 n = n = 0 ( n + 1 ) 2 2 n + 1 = n = 0 n 2 + 2 n + 1 2 n + 1 = 1 2 n = 0 n 2 2 n + n = 0 n 2 n + n = 1 1 2 n \sum _{ n=0 }^{ \infty }{ \frac { n^{ 2 } }{ 2^{ n } } } =\sum _{ n=1 }^{ \infty }{ \frac { n^{ 2 } }{ 2^{ n } } } =\sum _{ n=0 }^{ \infty }{ \frac { (n+1)^{ 2 } }{ 2^{ n+1 } } } =\sum _{ n=0 }^{ \infty }{ \frac { n^{ 2 }+2n+1 }{ 2^{ n+1 } } } =\frac { 1 }{ 2 } \sum _{ n=0 }^{ \infty }{ \frac { n^{ 2 } }{ 2^{ n } } } +\sum _{ n=0 }^{ \infty }{ \frac { n }{ 2^{ n } } } +\sum _{ n=1 }^{ \infty }{ \frac { 1 }{ 2^{ n } } } Then, 1 2 n = 0 n 2 2 n = n = 0 n 2 n + n = 1 1 2 n = 2 + 1 = 3 \frac { 1 }{ 2 } \sum _{ n=0 }^{ \infty }{ \frac { n^{ 2 } }{ 2^{ n } } } =\sum _{ n=0 }^{ \infty }{ \frac { n }{ 2^{ n } } } +\sum _{ n=1 }^{ \infty }{ \frac { 1 }{ 2^{ n } } } =2+1=3 Finally n = 0 n 2 2 n = 6 \sum _{ n=0 }^{ \infty }{ \frac { n^{ 2 } }{ 2^{ n } } } =6

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...