Algebraic Triangle.

Algebra Level 4

If a , b , c a,b,c are the sides of a triangle such that x 2 2 ( a + b + c ) x + 3 λ ( a b + b c + c a ) = 0 x^2-2(a+b+c)x+3\lambda(ab+bc+ca)=0 has real roots, which of the following is correct?

4 / 3 < λ < 5 / 3 4/3<\lambda<5/3 NONE OF THESE λ > 5 / 3 \lambda>5/3 λ < 4 / 3 \lambda<4/3

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rudresh Tomar
Nov 13, 2014

i f a , b , c a r e t h e s i d e s o f a t r i a n g l e t h e n , ( a + b + c ) 2 4 ( a b + b c + c a ) ( a + b + c ) 2 ( a b + b c + c a ) 4 ( 1 ) n o w x 2 2 ( a + b + c ) x + 3 λ ( a b + b c + c a ) = 0 h a s r e a l r o o t s D 0 4 ( a + b + c ) 2 4.3 λ ( a b + b c + c a ) 0 ( a + b + c ) 2 3 λ ( a b + b c + c a ) 0 ( a + b + c ) 2 ( a b + b c + c a ) 3 λ 4 3 λ λ < 4 3 if\quad a,b,c\quad are\quad the\quad sides\quad of\quad a\quad triangle\quad then,\\ { (a+b+c) }^{ 2 }\ge 4(ab+bc+ca)\\ \Longrightarrow \frac { { (a+b+c) }^{ 2 } }{ (ab+bc+ca) } \ge 4\quad \dashrightarrow (1)\\ \\ now\quad \rightarrow \quad { x }^{ 2 }-2(a+b+c)x+3\lambda (ab+bc+ca)=0\\ has\quad real\quad roots\quad \therefore \\ D\ge 0\\ \Longrightarrow \quad 4{ (a+b+c) }^{ 2 }-4.3\lambda (ab+bc+ca)\ge 0\\ \Longrightarrow { \quad (a+b+c) }^{ 2 }-3\lambda (ab+bc+ca)\ge 0\\ \Longrightarrow \quad \frac { { (a+b+c) }^{ 2 } }{ (ab+bc+ca) } \ge 3\lambda \\ \Longrightarrow \quad 4\ge 3\lambda \\ \Longrightarrow \quad \lambda <\frac { 4 }{ 3 } \\

It is a question of ''The pearson guide for complete mathematics for IIT-JEE"

Parth Lohomi - 6 years, 6 months ago

@Rudresh Tomar I don't know how your proof works, but there's an awful lot of mistakes in it. For example, the identity you assumed at the beginning does not hold true for a triangle with sides a = 3 , b = 4 , c = 5 a=3,b=4,c=5 since ( a + b + c ) 2 = 144 (a+b+c)^2=144 and 4 ( a b + b c + c a ) = 4 ( 12 + 20 + 15 ) = 188 4(ab+bc+ca)=4(12+20+15)=188 and we can clearly see that 144 188 144\ngeq 188 . Furthermore, the substitution you made at the before last line doesn't work when when you are dealing with inequalities. For example, we have 5 1 5 3 5\geq 1 \land 5\geq 3 but 1 3 1\ngeq 3 .

Prasun Biswas - 6 years, 6 months ago

not true bro :D, $4(ab+bc+ac) > (a+b+c)^2$ because $2(ab+bc+ac) \ge a^2+b^2+c^2$ beacause $ a(b+c-a)+b(a+c-b)+c(a+b-c) >0$

Road Human - 6 years, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...