Hard work pays off

Algebra Level 4

Find the smallest positive integer n n with the property that the polynomial x 4 n x + 63 x^4-nx+63 can be written as a product of two non-constant polynomials with integer coefficients.


The answer is 8.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Jun 21, 2015

Let x 4 n x + 63 = { ( x + a ) ( x 3 + b x 2 + c x + d ) . . . ( 1 ) ( x 2 + a x + b ) ( x 2 + c x + d ) . . . ( 2 ) \space x^4 - nx + 63 = \begin{cases} (x+a)(x^3+bx^2+cx + d) & ...(1) \\(x^2+ax+b)(x^2+cx+d) & ...(2) \end{cases}

Case 1:

x 4 n x + 63 = ( x + a ) ( x 3 + b x 2 + c x + d ) = x 4 + ( a + b ) x 3 + ( a b + c ) x 2 + ( a c + d ) x + a d \begin{aligned} x^4 - nx + 63 & = (x+a)(x^3+bx^2+cx + d) \\ & = x^4 + (a+b) x^3 + (ab+c) x^2 +(ac+d)x + ad \end{aligned}

Equating the coefficients:

{ a + b = 0 b = a a b + c = 0 c = a 2 a c + d = n n = a 3 d a d = 63 n = a 3 63 a \begin{cases} a+b = 0 & \Rightarrow b = -a \\ ab + c = 0 & \Rightarrow c = a^2 \\ ac+d = -n & \Rightarrow n = - a^3 - d \\ ad = 63 & \Rightarrow n = - a^3 -\dfrac{63}{a} \end{cases}

We note that a a must be divisor of 63 63 and that n < 0 n < 0 for a > 0 a > 0 . Therefore, the possible n n are:

\(\begin{array} {} a= -1 & \Rightarrow n = 64 & a = -3 & \Rightarrow n = 48 & a = -7 & \Rightarrow n = 352 \\ a = -9 & \Rightarrow n =736 & a = -21 & \Rightarrow n = 9264 & a = -63 & \Rightarrow n = 250048 \end{array} \)

Case 2:

x 4 n x + 63 = ( x 2 + a x + b ) ( x 2 + c x + d ) = x 4 + ( a + c ) x 3 + ( b + d + a c ) x 2 + ( a d + b c ) x + b d \begin{aligned} x^4 - nx + 63 & = (x^2+ax+b)(x^2+cx+d) \\ & = x^4+(a+c)x^3 + (b + d + ac)x^2 + (ad+bc)x +bd \end{aligned}

Equating the coefficients:

{ a + c = 0 c = a b + d + a c = 0 a 2 = b + d a d + b c = n n = a ( b d ) for b > d b d = 63 \begin{cases} a+c = 0 & \Rightarrow c = -a \\ b + d + ac = 0 & \Rightarrow a^2 = b + d \\ ad+bc = -n & \Rightarrow n = a(b-d) \text{ for } b > d \\ bd = 63 \end{cases}

b d = 63 { b = 63 d = 1 a = 64 = 8 n = 8 ( 63 1 ) = 496 b = 21 d = 3 a = 24 Rejected: non-integer n b = 9 d = 7 a = 16 = 4 n = 4 ( 9 7 ) = 8 bd = 63 \Rightarrow \begin{cases} b = 63 & d = 1 & \Rightarrow a = \sqrt{64} = 8 & n = 8(63-1) = 496 \\ b = 21 & d = 3 & \Rightarrow \color{#D61F06}{a = \sqrt{24}} & \color{#D61F06}{\text{Rejected: non-integer n}} \\ b = 9 & d = 7 & \Rightarrow a = \sqrt{16} = 4 & n = 4(9-7) = 8 \end{cases}

Therefore, the smallest positive integer n = 8 n = \boxed{8}

Moderator note:

The writing of your solution is not well phrased. You inadvertently suggest that the values of a , b , c , d a,b,c,d in ( 1 ) (1) equals to the values of a , b , c , d a,b,c,d in ( 2 ) (2) .

On the other hand, one might argue that we can find the linear factors of the polynomial by Rational Root Theorem .

Yes, too eager to write solution. I have changed the solution.

Chew-Seong Cheong - 5 years, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...