Nested Fraction

Algebra Level 3

Given: a 0 + 1 a 1 + 1 a 2 + 1 a 3 + 1 a 4 = 222 155 a_0+\cfrac{1}{a_1+\cfrac{1}{a_2+\cfrac{1}{a_3+\cfrac{1}{a_4}}}}=\frac{222}{155}

Evaluate: 1 0 4 a 0 + 1 0 3 a 1 + 1 0 2 a 2 + 1 0 1 a 3 + 1 0 0 a 4 = ? 10^4a_0+10^3a_1+10^2a_2+10^1a_3+10^0a_4 =? where a 0 , a 1 , a 2 , a 3 , a 4 , a 5 a_0,a_1,a_2,a_3,a_4,a_5 are positive integers.

14235 13452 15432 12354 12345

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Ravneet Singh
Jul 26, 2017

222 155 = 1 + 67 155 = 1 + 1 155 67 = 1 + 1 2 + 21 67 = 1 + 1 2 + 1 67 21 = 1 + 1 2 + 1 3 + 4 21 \dfrac{222}{155} = 1 + \dfrac{67}{155} = 1 + \cfrac{1}{\dfrac{155}{67}} = 1 + \cfrac{1}{2 + \dfrac{21}{67}} = 1 + \cfrac{1}{2 + \dfrac{1}{\dfrac{67}{21}}} = 1 + \cfrac{1}{2 + \dfrac{1}{3 +\dfrac{4}{21}}}

= 1 + 1 2 + 1 3 + 1 21 4 = 1 + 1 2 + 1 3 + 1 5 + 1 4 = 1 + \cfrac{1}{2 + \dfrac{1}{3 +\dfrac{1}{\dfrac{21}{4}}}} = 1 + \cfrac{1}{2 + \dfrac{1}{3 +\dfrac{1}{5 + \dfrac{1}{4}}}}

Here a 0 = 1 , a 1 = 2 , a 2 = 3 , a 3 = 5 , a 4 = 4 a_0 = 1, a_1 = 2, a_2 = 3, a_3 = 5, a_4 = 4

So, 1 0 4 a 0 + 1 0 3 a 1 + 1 0 2 a 2 + 1 0 1 a 3 + 1 0 0 a 4 = 12354 10^4a_0+10^3a_1+10^2a_2+10^1a_3+10^0a_4 = \boxed{12354}

Thank you for sharing a nice solution.

Hana Wehbi - 3 years, 10 months ago

Relevant wiki: https://brilliant.org/wiki/continued-fractions/

Alex Li - 3 years, 10 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...