An algebra problem by Hana Wehbi

Algebra Level 3

If x , y x,y and z z are non-zero real numbers satisfying x + y + z = 0 x+y+z= 0 , what is the value of 11 ( x 2 y z + y 2 x z + z 2 x y ) 2 11 \left(\dfrac{x^2}{yz} + \dfrac{y^2}{xz} + \dfrac{z^2}{xy} \right)^2 ?

39 99 11 121

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Hana Wehbi
May 23, 2016

x + y + z = 0 x 3 + y 3 + z 3 = 3 x y z x+y+z=0 \implies x^{3}+y^{3}+z^{3}=3xyz

Multiplying the numerators and denominators of the given expression by x x , y y and z z respectively,

( x 2 y z \large\frac{x^{2}}{yz} + y 2 x z \large\frac{y^{2}}{xz} + z 2 x y \large\frac{z^{2}}{xy} ) = x 3 x y z \frac{x^{3}}{xyz} + y 3 x y z \frac{y^{3}}{xyz} + z 3 x y z \frac{z^{3}}{xyz} = x 3 + y 3 + z 3 x y z \frac{x^{3}+y^{3}+z^{3}}{xyz} = 3 x y z x y z \frac{3xyz}{xyz} = 3

Keeping in mind x x , y y and z z are not equal to 0 0 .

Thus, our answer is 11 3 2 = 99 11*3^{2}=99

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...