5 , 5 5 , 5 5 5 , 5 5 5 5 , . . . If general term of this sequence is B A ( C n − D ) where A,B,C,D are positive integers, n = 1 , 2 , 3 , 4 , . . . , and B A is an irreducible fraction. Find the value of ( A + D ) ! C ! − B !
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
6 ! 1 0 ! − 9 ! = 6 ! 9 ! × 9 = 9 × 8 × 7 × 9 ._Easy for hand calculations.Otherwise same approach as yours.
@Chew-Seong Cheong Great solution!
Typo: 1 0 ! = 3 6 2 8 8 0 0 1 0 ! − 9 ! = 3 2 6 5 9 2 0
Log in to reply
Thanks for liking my solution and the corrections. I have corrected them.
Problem Loading...
Note Loading...
Set Loading...
\(\begin{array} {} n = 1 & \Rightarrow a_1 & = 5 & = 5(1) \\ n = 2 & \Rightarrow a_2 & = 55 & = 5(1+10) \\ n = 3 & \Rightarrow a_3 & = 555 & = 5(1+10+10^2) \\ n = 4 & \Rightarrow a_4 & = 5555 & = 5(1+10+10^2+10^3) \\ ... & \Rightarrow a_n & = 555...5 & = 5(1+10+10^2+...+10^{n-1}) \\ & & & = 5 \left(\dfrac{10^n - 1}{10-1} \right) \\ & & & = \dfrac{5}{9} \left(10^n - 1 \right)\end{array} \)
⇒ ( A + D ) ! C ! − B ! = ( 5 + 1 ) ! 1 0 ! − 9 ! = 7 2 0 3 2 6 5 9 2 0 − 3 6 2 8 8 0 = 7 2 0 3 6 2 8 8 0 0 = 4 5 3 6