Ha HaHa HaHaHa!

5 , 55 , 555 , 5555 , . . . \huge 5,\quad 55,\quad 555,\quad 5555,\quad ... If general term of this sequence is A B ( C n D ) \dfrac{A}{B}(C^{n}-D) where A,B,C,D are positive integers, n = 1 , 2 , 3 , 4 , . . . n=1,2,3,4,... , and A B \dfrac{A}{B} is an irreducible fraction. Find the value of C ! B ! ( A + D ) ! \dfrac{C!-B!}{(A+D)!}


The answer is 4536.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Apr 28, 2015

\(\begin{array} {} n = 1 & \Rightarrow a_1 & = 5 & = 5(1) \\ n = 2 & \Rightarrow a_2 & = 55 & = 5(1+10) \\ n = 3 & \Rightarrow a_3 & = 555 & = 5(1+10+10^2) \\ n = 4 & \Rightarrow a_4 & = 5555 & = 5(1+10+10^2+10^3) \\ ... & \Rightarrow a_n & = 555...5 & = 5(1+10+10^2+...+10^{n-1}) \\ & & & = 5 \left(\dfrac{10^n - 1}{10-1} \right) \\ & & & = \dfrac{5}{9} \left(10^n - 1 \right)\end{array} \)

C ! B ! ( A + D ) ! = 10 ! 9 ! ( 5 + 1 ) ! = 3265920 362880 720 = 3628800 720 = 4536 \Rightarrow \dfrac {C!-B!}{(A+D)!} = \dfrac {10!-9!}{(5+1)!} = \dfrac {3265920 - 362880}{720} = \dfrac{3628800} {720} = \boxed {4536}

10 ! 9 ! 6 ! = 9 ! × 9 6 ! = 9 × 8 × 7 × 9 \frac { 10!-9! }{ 6! } =\frac { 9!\times 9 }{ 6! } =9\times 8\times 7\times 9 ._Easy for hand calculations.Otherwise same approach as yours.

shivamani patil - 5 years, 11 months ago

@Chew-Seong Cheong Great solution!

Typo: 10 ! = 3628800 10 ! 9 ! = 3265920 10!=3628800\\ 10!-9!=3265920

Sualeh Asif - 5 years, 11 months ago

Log in to reply

Thanks for liking my solution and the corrections. I have corrected them.

Chew-Seong Cheong - 5 years, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...