An algebra problem by Ilham Saiful Fauzi

Algebra Level pending

x 4 8 x 3 + 20 x 2 32 x + 16 = 0 x^{4}-8x^{3}+20x^{2}-32x+16=0 Find the sum of its real roots.


The answer is 6.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Michael Huang
Dec 8, 2016

Method 1 - Factoring out x 2 x^2

Rearranging terms, x 4 8 x 3 + 20 x 2 32 x + 16 = 1 x 2 ( x 2 8 x + 20 32 x + 16 x 2 ) Factor each term by x 2 = 1 x 2 ( ( x 2 + 16 x 2 ) ( 8 x + 32 x ) + 20 ) = 1 x 2 ( ( x 2 + ( 4 x ) 2 + 8 ) 8 ( x + 4 x ) + 20 8 ) For ( x 2 + 16 x 2 ) , complete the squares = 1 x 2 ( ( x + 4 x ) 2 8 ( x + 4 x ) + 12 ) = 1 x 2 ( ( x + 4 x ) 6 ) ( ( x + 4 x ) 2 ) Treating ( x + 4 x ) a s a v a r i a b l e , f a c t o r = ( x 2 + 4 6 x ) ( x 2 + 4 2 x ) Distribute 1 x for each factor \begin{array}{rlccl} x^4 - 8x^3 + 20x^2 - 32x + 16 &= \dfrac{1}{x^2}\left(x^2 - 8x + 20 - \dfrac{32}{x} + \dfrac{16}{x^2}\right) & & & {\color{#3D99F6}\text{Factor each term by }x^2}\\ &= \dfrac{1}{x^2}\left(\left(x^2 + \dfrac{16}{x^2}\right) - \left(8x + \dfrac{32}{x}\right) + 20\right)\\ &= \dfrac{1}{x^2}\left(\left(x^2 + \left(\dfrac{4}{x}\right)^2 + 8\right) - 8\left(x + \dfrac{4}{x}\right) + 20 - 8\right) & & & {\color{#3D99F6}\text{For }\left(x^2 + \dfrac{16}{x^2}\right),\text{ complete the squares}}\\ &= \dfrac{1}{x^2}\left(\left(x + \dfrac{4}{x}\right)^2 - 8\left(x + \dfrac{4}{x}\right) + 12\right)\\ &= \dfrac{1}{x^2}\left(\left(x + \dfrac{4}{x}\right) - 6\right)\left(\left(x + \dfrac{4}{x}\right) - 2\right) & & & {\color{#3D99F6}\text{Treating }\left(x + \dfrac{4}{x}\right) as a variable, factor}\\ &= \left(x^2 + 4 - 6x\right)\left(x^2 + 4 - 2x\right) & & & {\color{#3D99F6}\text{Distribute }\dfrac{1}{x}\text{ for each factor}} \end{array} So we evaluate ( x 2 6 x + 4 ) ( x 2 2 x + 4 ) = 0 \left(x^2 - 6x + 4\right)\left(x^2 - 2x + 4\right) = 0

Method 2 - Combining Like Terms

Factorization can also be done by combining like terms: x 4 8 x 3 + 20 x 2 32 x + 16 = x 4 + ( 6 x 3 2 x 3 ) + ( 4 x 2 + 12 x 2 + 4 x 2 ) + ( 8 x 24 x ) + 16 = ( x 4 6 x 3 + 4 x 2 ) + ( 2 x 3 + 12 x 2 8 x ) + ( 4 x 2 24 x + 16 ) = x 2 ( x 2 6 x + 4 ) 2 x ( x 2 6 x + 4 ) + 4 ( x 2 6 x + 4 ) = ( x 2 6 x + 4 ) ( x 2 2 x + 4 ) \begin{array}{rlccl} x^4 - 8x^3 + 20x^2 - 32x + 16 &= x^4 + \left(-6x^3 - 2x^3\right) + \left(4x^2 + 12x^2 + 4x^2\right) + \left(-8x - 24x\right) + 16\\ &= \left(x^4 - 6x^3 + 4x^2\right) + \left(-2x^3 + 12x^2 - 8x\right) + \left(4x^2 - 24x + 16\right)\\ &= x^2\left(x^2 - 6x + 4\right) - 2x\left(x^2 - 6x + 4\right) + 4\left(x^2 - 6x + 4\right)\\ &= \left(x^2 - 6x + 4\right)\left(x^2 - 2x + 4\right) \end{array}


Firstly, if x 2 6 x + 4 = 0 x^2 - 6x + 4 = 0 then by quadratic formula , x = 6 ± 6 2 4 1 4 2 = 6 ± 20 2 = 6 ± 2 5 2 = 2 ( 3 ± 5 ) 2 = 3 ± 5 \begin{array}{rl} x &= \dfrac{6 \pm \sqrt{6^2 - 4\cdot 1 \cdot 4}}{2}\\ &= \dfrac{6 \pm \sqrt{20}}{2}\\ &= \dfrac{6 \pm 2\sqrt{5}}{2}\\ &= \dfrac{2\left(3 \pm \sqrt{5}\right)}{2}\\ &= 3 \pm \sqrt{5} \end{array} Also note that it's simple to solve by completing the squares , x 2 6 x + 9 + 4 9 = 0 ( x 3 ) 2 = 5 x = 3 ± 5 \begin{array}{rl} x^2 - 6x + 9 + 4 - 9 &= 0\\ (x - 3)^2 &= 5\\ x &= 3 \pm \sqrt{5} \end{array}


Secondly, if x 2 2 x + 4 = 0 x^2 - 2x + 4 = 0 since the discriminant is Δ = b 2 4 a c = ( 2 ) 2 4 ( 1 ) ( 4 ) = 12 < 0 \Delta = b^2 - 4ac = \left(-2\right)^2 - 4(1)(4) = -12 < 0 this shows that the roots are imaginary. Because the problem asks for real solutions, we can neglect these roots.


Therefore, the sum of the real roots are 3 + 5 + ( 3 5 ) = 6 3 + \sqrt{5} + \left(3 - \sqrt{5}\right) = \boxed{6}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...