An algebra problem by Ilham Saiful Fauzi

Algebra Level pending

2017 2 1 + 1 2 + 2017 3 2 + 2 3 + 2017 4 3 + 3 4 + . . . + 2017 2017 2016 + 2016 2017 \frac{2017}{2\sqrt{1}+1\sqrt{2}}+\frac{2017}{3\sqrt{2}+2\sqrt{3}}+\frac{2017}{4\sqrt{3}+3\sqrt{4}}+...+\frac{2017}{2017\sqrt{2016}+2016\sqrt{2017}} If the result has the form a + b c a+b\sqrt{c} , where a a , b b and c c are integers, then find the value of a + b + c a+b+c .


The answer is 4033.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Apr 27, 2017

S = 2017 2 1 + 1 2 + 2017 3 2 + 2 3 + 2017 4 3 + 3 4 + + 2017 2017 2016 + 2016 2017 = n = 1 2016 2017 ( n + 1 ) n + n n + 1 = 2017 n = 1 2016 ( n + 1 ) n n n + 1 ( ( n + 1 ) n + n n + 1 ) ( ( n + 1 ) n n n + 1 ) = 2017 n = 1 2016 ( n + 1 ) n n n + 1 n ( n + 1 ) 2 n 2 ( n + 1 ) = 2017 n = 1 2016 ( n + 1 ) n n n + 1 n ( n 2 + 2 n + 1 n 2 n ) = 2017 n = 1 2016 ( n + 1 ) n n n + 1 n ( n + 1 ) = 2017 n = 1 2016 ( 1 n 1 n + 1 ) = 2017 ( 1 1 1 2017 ) = 2017 2017 \begin{aligned} S & = \frac{2017}{2\sqrt{1}+1\sqrt{2}}+\frac{2017}{3\sqrt{2}+2\sqrt{3}}+\frac{2017}{4\sqrt{3}+3\sqrt{4}}+\cdots+\frac{2017}{2017\sqrt{2016}+2016\sqrt{2017}} \\ & = \sum_{n=1}^{2016} \frac {2017}{(n+1)\sqrt n + n \sqrt{n+1}} \\ & = 2017 \sum_{n=1}^{2016} \frac {(n+1)\sqrt n - n \sqrt{n+1}}{\left((n+1)\sqrt n + n \sqrt{n+1}\right)\left((n+1)\sqrt n - n \sqrt{n+1}\right)} \\ & = 2017 \sum_{n=1}^{2016} \frac {(n+1)\sqrt n - n \sqrt{n+1}}{n(n+1)^2 - n^2(n+1)} \\ & = 2017 \sum_{n=1}^{2016} \frac {(n+1)\sqrt n - n \sqrt{n+1}}{n(n^2 + 2n + 1 - n^2-n)} \\ & = 2017 \sum_{n=1}^{2016} \frac {(n+1)\sqrt n - n \sqrt{n+1}}{n(n+1)} \\ & = 2017 \sum_{n=1}^{2016} \left(\frac 1{\sqrt n} - \frac 1{\sqrt{n+1}} \right) \\ & = 2017 \left(\frac 1{\sqrt 1} - \frac 1{\sqrt{2017}} \right) \\ & = 2017 - \sqrt{2017} \end{aligned}

a + b + c = 2017 1 + 2017 = 4033 \implies a + b + c = 2017-1+2017 = \boxed{4033}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...