A geometry problem by Ilham Saiful Fauzi

Geometry Level 4

Let tan p \tan p and tan q \tan q be the roots of x 2 + a x + 2016 = 0 x^{2}+ax+2016=0 for some integer a a . Find the value of the following. a sin ( 2 ( p + q ) ) + 4030 cos 2 ( p + q ) a\sin(2(p+q))+4030\cos^{2}(p+q)


The answer is 4030.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Rishabh Jain
Jun 20, 2016

Using Vieta's formula, tan p + tan q = a , tan p tan q = 2016 \small{\tan p+\tan q=-a,\tan p\tan q=2016} .

tan 2 ( p + q ) = tan p + tan q 1 tan p tan q = a 2015 \small{\tan 2(p+q)=\dfrac{\tan p+\tan q}{1-\tan p \tan q}=\dfrac a{2015}}

sin 2 ( p + q ) = 2 tan ( p + q ) 1 + tan 2 ( p + q ) = 2 a 2015 ( 1 + tan 2 ( p + q ) \small{\sin 2(p+q)=\dfrac{2\tan (p+q)}{1+\tan^2 (p+q)}=\dfrac{\frac{2a}{2015}}{(1+\tan^2(p+q)}}

cos 2 ( p + q ) = 1 tan 2 ( p + q ) 1 + tan 2 ( p + q ) = 1 2015 ( 2015 a 2 2015 ) 1 + tan 2 ( p + q ) \small{\cos 2(p+q)=\dfrac{1-\tan^2(p+q)}{1+\tan^2(p+q)}=\dfrac{\frac{1}{2015}\left(2015-\frac{a^2}{2015}\right)}{1+\tan^2(p+q)}} Write the given expression as: F = a sin ( 2 ( p + q ) ) + 4030 cos 2 ( p + q ) 1 + cos 2 ( p + q ) 2 \mathfrak {F}=a\sin(2(p+q))+4030\underbrace{\cos^{2}(p+q)}_{\dfrac{1+\cos 2(p+q)}{2}}

Substitute values of sin 2 ( p + q ) \sin 2(p+q) and cos 2 ( p + q ) \cos 2(p+q) found previously so that : F = 4030 \mathfrak F=\boxed{4030}

Gonna borrow the first few lines of your solution XD

Manuel Kahayon - 4 years, 11 months ago
Manuel Kahayon
Jun 21, 2016

Using Vieta's formula, tan p + tan q = a , tan p tan q = 2016 \small{\tan p+\tan q=-a,\tan p\tan q=2016} .

tan 2 ( p + q ) = tan p + tan q 1 tan p tan q = a 2015 \small{\tan 2(p+q)=\dfrac{\tan p+\tan q}{1-\tan p \tan q}=\dfrac a{2015}}

This gives us 2015 tan ( p + q ) = a 2015 \tan(p+q) = a

a sin ( 2 ( p + q ) ) + 4030 cos 2 ( p + q ) = 2015 tan ( p + q ) s i n ( 2 ( p + q ) ) + 4030 cos 2 ( p + q ) a\sin(2(p+q))+4030\cos^{2}(p+q) = 2015 \tan(p+q)sin(2(p+q))+4030\cos^{2}(p+q)

But since tan ( p + q ) = sin ( p + q ) cos ( p + q ) \tan(p+q) = \frac{\sin(p+q)}{\cos(p+q)} and sin ( 2 ( p + q ) ) = 2 sin ( p + q ) cos ( p + q ) \sin(2(p+q)) = 2\sin(p+q)\cos(p+q) ,

Therefore 2015 tan ( p + q ) s i n ( 2 ( p + q ) ) + 4030 cos 2 ( p + q ) = 4030 ( sin ( p + q ) cos ( p + q ) ) ( sin ( p + q ) cos ( p + q ) ) + 4030 cos 2 ( p + q ) 2015 \tan(p+q)sin(2(p+q))+4030\cos^{2}(p+q) = 4030 (\frac{\sin(p+q)}{\cos(p+q)})( \sin(p+q)\cos(p+q))+4030\cos^{2}(p+q)

= 4030 ( sin 2 ( p + q ) + cos 2 ( p + q ) ) = 4030 = 4030(\sin^2(p+q)+\cos^2(p+q)) = 4030 (Since cos 2 θ + sin 2 θ = 1 \cos^2 \theta + \sin^2 \theta = 1 for all θ \theta )

Therefore our answer is 4030 \boxed{4030}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...