Let tan p and tan q be the roots of x 2 + a x + 2 0 1 6 = 0 for some integer a . Find the value of the following. a sin ( 2 ( p + q ) ) + 4 0 3 0 cos 2 ( p + q )
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Gonna borrow the first few lines of your solution XD
Using Vieta's formula, tan p + tan q = − a , tan p tan q = 2 0 1 6 .
tan 2 ( p + q ) = 1 − tan p tan q tan p + tan q = 2 0 1 5 a
This gives us 2 0 1 5 tan ( p + q ) = a
a sin ( 2 ( p + q ) ) + 4 0 3 0 cos 2 ( p + q ) = 2 0 1 5 tan ( p + q ) s i n ( 2 ( p + q ) ) + 4 0 3 0 cos 2 ( p + q )
But since tan ( p + q ) = cos ( p + q ) sin ( p + q ) and sin ( 2 ( p + q ) ) = 2 sin ( p + q ) cos ( p + q ) ,
Therefore 2 0 1 5 tan ( p + q ) s i n ( 2 ( p + q ) ) + 4 0 3 0 cos 2 ( p + q ) = 4 0 3 0 ( cos ( p + q ) sin ( p + q ) ) ( sin ( p + q ) cos ( p + q ) ) + 4 0 3 0 cos 2 ( p + q )
= 4 0 3 0 ( sin 2 ( p + q ) + cos 2 ( p + q ) ) = 4 0 3 0 (Since cos 2 θ + sin 2 θ = 1 for all θ )
Therefore our answer is 4 0 3 0
Problem Loading...
Note Loading...
Set Loading...
Using Vieta's formula, tan p + tan q = − a , tan p tan q = 2 0 1 6 .
tan 2 ( p + q ) = 1 − tan p tan q tan p + tan q = 2 0 1 5 a
sin 2 ( p + q ) = 1 + tan 2 ( p + q ) 2 tan ( p + q ) = ( 1 + tan 2 ( p + q ) 2 0 1 5 2 a
cos 2 ( p + q ) = 1 + tan 2 ( p + q ) 1 − tan 2 ( p + q ) = 1 + tan 2 ( p + q ) 2 0 1 5 1 ( 2 0 1 5 − 2 0 1 5 a 2 ) Write the given expression as: F = a sin ( 2 ( p + q ) ) + 4 0 3 0 2 1 + cos 2 ( p + q ) cos 2 ( p + q )
Substitute values of sin 2 ( p + q ) and cos 2 ( p + q ) found previously so that : F = 4 0 3 0