An algebra problem by Ilham Saiful Fauzi

Algebra Level 5

2016 2015 + 2016 2015 2014 2013 + 2016 2015 2014 2013 2012 2011 + + 2016 2015 2014 2013 2012 2011 4 3 2 1 = ? \dfrac{2016}{2015} + \dfrac{2016}{2015}\cdot \dfrac{2014}{2013} + \dfrac{2016}{2015}\cdot \dfrac{2014}{2013} \cdot \dfrac{2012}{2011} + \cdots +\dfrac{2016}{2015}\cdot \dfrac{2014}{2013} \cdot \dfrac{2012}{2011} \cdots \dfrac 43 \cdot \dfrac 21 = \, ?


The answer is 2016.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Shaun Leong
Sep 9, 2016

Call the expression s 2016 s_{2016} .

We prove by induction that s n = n s_n=n for even n n .

When n = 2 n=2 , s 2 = 2 1 = 2 s_2=\frac21=2

Assume s k = k s_k=k holds true for some even k k .

s k + 2 = k + 2 k + 1 + k + 2 k + 1 s k s_{k+2}=\frac{k+2}{k+1}+\frac{k+2}{k+1}s_k = k + 2 k + 1 ( 1 + k ) =\frac{k+2}{k+1}(1+k) = k + 2 =k+2

Thus by the principle of mathematical induction, we have shown the s n = n s_n=n or in particular s 2016 = 2016 s_{2016}=\boxed{2016} .

Aditya Dhawan
Sep 17, 2016

a n = k = 1 n ( 2018 2 k ) k = 1 n ( 2017 2 k ) , n 2 a n = k = 1 n ( 2018 2 k ) × [ { 2017 2 k } { 2016 2 k } ] k = 1 n ( 2017 2 k ) = k = 1 n ( 2018 2 k ) k = 1 n 1 ( 2017 2 k ) k = 1 n + 1 ( 2018 2 k ) k = 1 n ( 2017 2 k ) [ F ( x ) F ( x 1 ) f o r m , h e n c e T e l e s c o p i c ] N o w , n = 2 1008 a n = F ( 2 ) F ( 1008 ) = 2016 × 2014 2015 ( T e l e s c o p i c s e r i e s ) S = n = 2 1008 a n + 2016 2015 = 2016 { a }_{ n }=\quad \frac { \prod _{ k=1 }^{ n }{ (2018-2k) } }{ \prod _{ k=1 }^{ n }{ (2017-2k) } } ,\quad \forall \quad n\ge 2\\ \\ \therefore \quad { a }_{ n }=\quad \frac { \prod _{ k=1 }^{ n }{ (2018-2k) } \times \left[ \left\{ 2017-2k \right\} -\left\{ 2016-2k \right\} \right] }{ \prod _{ k=1 }^{ n }{ (2017-2k) } } \\ =\quad \frac { \prod _{ k=1 }^{ n }{ (2018-2k) } }{ \prod _{ k=1 }^{ n-1 }{ (2017-2k) } } \quad -\quad \frac { \prod _{ k=1 }^{ n+1 }{ (2018-2k) } }{ \prod _{ k=1 }^{ n }{ (2017-2k) } } \quad \left[ F(x)-F(x-1)\quad form,\quad hence\quad Telescopic \right] \\ Now,\quad \sum _{ n=2 }^{ 1008 }{ { a }_{ n } } =\quad F(2)-F(1008)=\quad \frac { 2016\times 2014 }{ 2015 } \quad (\quad Telescopic\quad series\quad )\\ \therefore \quad S=\quad \sum _{ n=2 }^{ 1008 }{ { a }_{ n } } +\quad \frac { 2016 }{ 2015 } =\quad \boxed { 2016 } \\ \\ \\ \\

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...