Deal With These Sums Separately

Algebra Level 2

j = 2 2016 k = 1 j 1 k j = 1 2 + 1 3 + 2 3 + 1 4 + 2 4 + 3 4 + + 2013 2016 + 2014 2016 + 2015 2016 = ? \sum_{j=2}^{2016} \sum_{k=1}^{j-1} \dfrac kj = \frac{1}{2}+\frac{1}{3}+\frac{2}{3}+\frac{1}{4}+\frac{2}{4}+\frac{3}{4}+\cdots+\frac{2013}{2016}+\frac{2014}{2016}+\frac{2015}{2016}= \, ?


The answer is 1015560.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Oct 24, 2016

Relevant wiki: Sum of n, n², or n³

Note: From the wiki above, we know that 1 + 2 + 3 + + n = n ( n + 1 ) 2 1 + 2 + 3 + \cdots + n = \frac{n(n+1)}{2} . And we will applying this algebraic identity repeatedly throughout this solution.

S n = j = 2 n k = 1 j 1 k j = 1 2 + 1 3 + 2 3 + 1 4 + 2 4 + 3 4 + . . . + 1 n + 2 n + . . . + n 1 n = j = 2 n k = 1 j 1 k j = j = 2 n j ( j 1 ) 2 j = j = 2 n j 1 2 = ( n 1 ) ( 2 + n ) 2 2 n 1 2 \begin{aligned} S_n & = \sum_{j=2}^n \sum_{k=1}^{j-1} \frac kj \\ & = \frac 12 + \frac 13 + \frac 23 + \frac 14 + \frac 24 + \frac 34+...+\frac 1n + \frac 2n +...+ \frac {n-1}n \\ & = \sum_{j=2}^n \frac {\sum_{k=1}^{j-1} k}j \\ & = \sum_{j=2}^n \frac {\frac {j(j-1)}2}j \\ & = \sum_{j=2}^n \frac {j-1}2 \\ & = \frac {(n-1)(2+n)}{2\cdot 2} - \frac {n-1}2 \end{aligned}

S 2016 = 2015 2018 4 2015 2 = 1015560 \begin{aligned} \implies S_{2016} & = \frac {2015 \cdot 2018}4 - \frac {2015}2 = \boxed{1015560} \end{aligned}

n(n-1)/2 is The Sum from 1 to n-1, not to n. Sum from 1 to n is equal to n(n+1)/2, I think.

Mirko Rossini - 4 years, 7 months ago

Log in to reply

1+2+3+4+5 = 5×6/2, not to 5×4/2

Mirko Rossini - 4 years, 7 months ago

Yes, and the sum is from 1 to j 1 j-1 and not j j .

Chew-Seong Cheong - 4 years, 7 months ago

sum ((sum (k/j), k=1 to j-1), j=2 to 2016) = 1015560

Wolframalpha

Harout G. Vartanian - 4 years, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...