An algebra problem by Ilham Saiful Fauzi

Algebra Level 5

Find how many real solutions x x such that 2015 x = 2016 x 2015x=2016\lfloor{x}\rfloor .


The answer is 2015.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Shandy Rianto
Jun 19, 2016

2015 x = 2016 x 2015x = 2016 \lfloor x \rfloor

For a value of x = a \lfloor x \rfloor = a , where a Z a \in Z there must be a solution for x x .

First, let find the smallest value for x \lfloor x \rfloor .

  • For x = 0 \lfloor x \rfloor = 0 : 2015 x = 0 x = 0 2015x = 0 \rightarrow x=0 .

Since 0 = 0 \lfloor 0 \rfloor= 0 , x = 0 \lfloor x \rfloor=0 is a solution.

  • For x = 1 \lfloor x \rfloor = -1 : 2015 x = 2016 x = 1.000496 2015x = -2016 \rightarrow x=-1.000496 .

Since 1.000496 1 \lfloor-1.000496 \rfloor \neq -1 , x = 1 \lfloor x \rfloor= -1 is not a solution.

So, the smallest value for x \lfloor x \rfloor is 0 0 .

Next, lets find the largest value for x \lfloor x \rfloor .

  • For x = 1 \lfloor x \rfloor= 1 : 2015 x = 2016 x = 1.000496 2015x = 2016 \rightarrow x=1.000496 .

Since 1.000496 = 1 \lfloor 1.000496 \rfloor = 1 , x = 1 \lfloor x \rfloor= 1 is a solution.

  • For x = 2 \lfloor x \rfloor= 2 : 2015 x = 4032 x = 2.000993 2015x = 4032 \rightarrow x=2.000993 .

Since 2.000993 = 2 \lfloor 2.000993 \rfloor= 2 , x = 2 \lfloor x \rfloor = 2 is a solution.

  • For x = 3 \lfloor x \rfloor= 3 : 2015 x = 6048 x = 3.001489 2015x = 6048 \rightarrow x=3.001489 .

Since 3.001489 = 3 \lfloor 3.001489 \rfloor = 3 , x = 3 \lfloor x \rfloor = 3 is a solution.

\quad \vdots

  • For x = 2013 \lfloor x \rfloor = 2013 : 2015 x = 2016 × 2013 = 4058208 x = 2013.999007 2015x = 2016 \times 2013 = 4058208 \rightarrow x=2013.999007 .

Since 2013.999007 = 2013 \lfloor 2013.999007 \rfloor = 2013 , x = 2013 \lfloor x \rfloor= 2013 is a solution.

  • For x = 2014 \lfloor x \rfloor= 2014 : 2015 x = 2016 × 2014 = 4060224 x = 2014.999504 2015x = 2016 \times 2014 = 4060224 \rightarrow x=2014.999504 .

Since 2014.999504 = 2014 \lfloor 2014.999504 = 2014 , x = 2014 \lfloor x \rfloor = 2014 is a solution.

  • For x = 2015 \lfloor x \rfloor = 2015 : 2015 x = 2016 × 2015 x = 2016 2015x = 2016 \times 2015 \rightarrow x=2016 .

Since 2016 2015 \lfloor 2016 \rfloor\neq 2015 , x = 2015 \lfloor x \rfloor= 2015 is not a solution.

So, the largest value for x \lfloor x \rfloor is 2014 2014 .

The value of x \lfloor x \rfloor so that 2015 x = 2016 x 2015x = 2016 \lfloor x \rfloor are 0 , 1 , 2 , 3 , , 2013 , 2014 0,1,2,3,\ldots,2013,2014 .

Since for every value of x \lfloor x \rfloor there must be a solution for x x , the number of solution of x x is 2015 \boxed{2015} .

Chew-Seong Cheong
Jun 19, 2016

2015 x = 2016 x Since RHS is an integer, LHS must be an integer. x = m 2015 2015 m 2015 = 2016 x m = 2016 x m is a multiple of 2016, that is m = 2016 n \begin{aligned} 2015x & = 2016 \lfloor x \rfloor \quad \quad \small \color{#3D99F6}{\text{Since RHS is an integer, LHS must be an integer.} \implies x = \frac m{2015}} \\ 2015 \cdot \color{#3D99F6}{\frac m{2015}} & = 2016 \lfloor x \rfloor \\ \implies \color{#3D99F6}{m} & = 2016 \lfloor x \rfloor \quad \quad \small \color{#3D99F6}{\implies m \text{ is a multiple of 2016, that is } m = 2016n} \end{aligned}

x = 2016 n 2015 = n + n 2015 \begin{aligned} \implies x & = \frac {2016n}{2015} = n + \frac n{2015} \end{aligned}

We note that for 2015 x = 2016 x 2015x = 2016 \lfloor x \rfloor to be true x \lfloor x \rfloor must be equal to n n . Since for x < 0 x < 0 , x = n 1 \lfloor x \rfloor = n-1 , x x must be 0 \ge 0 . For x 0 x \ge 0 , we note that x = n \lfloor x \rfloor = n if n 2015 < 1 n < 2015 \dfrac n{2015} < 1\implies n < 2015 . Therefore, n = 0 , 1 , 2 , . . . 2014 n=0,1,2,...2014 and the number of solutions x x is 2015 \boxed{2015} .

James Pohadi
Jul 17, 2016

2015 x = 2016 x 2015 ( x + { x } ) = 2016 x 2015 x + 2015 { x } = 2016 x 2015 { x } = x { x } = x 2015 \begin{aligned} 2015x & =2016 \lfloor{x}\rfloor \\ 2015( \lfloor{x}\rfloor +\{x\}) & =2016 \lfloor{x}\rfloor \\ 2015 \lfloor{x}\rfloor +2015\{x\} & =2016 \lfloor{x}\rfloor \\ 2015\{x\} & = \lfloor{x}\rfloor \\ \{x\} & =\frac{\lfloor{x}\rfloor}{2015} \end{aligned}

Since { x } \{x\} is a fractional part, then

0 { x } < 1 0 \leq \{x\} < 1

0 x 2015 < 1 0 \leq \large\frac{\lfloor{x}\rfloor}{2015} < 1

0 x < 2015 x = 0 , 1 , 2 , . . . , 2014 0 \leq \lfloor{x}\rfloor < 2015 \implies \lfloor{x}\rfloor = 0,1,2,...,2014 .

Since there are 2015 2015 solution for x \lfloor{x}\rfloor , then the number of real solution x x satisfying 2015 x = 2016 x 2015x =2016 \lfloor{x}\rfloor is 2015 \boxed{2015} .

Exactly the same way!!

Shreyash Rai - 4 years, 7 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...