An algebra problem by João Vitor

Algebra Level 5

Let P 1 ( x ) P^{ 1 }\left( x \right) be the remainder of the polynomial p ( x ) = ( x 1 ) 2017 p(x)={ (x-1) }^{ 2017 } when divided by another polynomial d ( x ) = x 2 x + 1 d(x)={ x }^{ 2 }-x+1 .

If we define P k + 1 ( x ) = P 1 ( P k ( x ) ) P^{ k+1 }(x)={ P }^{ 1 }\left( P^k(x) \right) for every positive integer k k , evaluate P 2017 ( 2016 ) P^{ 2017 }( 2016) .


Inspirations: PUC-Rio Maths Challenge and Harvard-MIT Tournament 2010 (General Test).


The answer is -1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

In this solution, we will apply modular arithmetics properties for polynomials. You can recall them here

  • Solution

Using p ( x ) 0 m o d p ( x ) p(x) \equiv 0\quad mod\quad p(x) we have:

x 2 x + 1 0 m o d p ( x ) ( x 1 ) x 2 m o d p ( x ) ( x 1 ) 2016 x 4032 m o d p ( x ) { x }^{ 2 }-x+1\equiv 0\quad mod\quad p(x)\Longleftrightarrow (x-1)\equiv { x }^{ 2 }\quad mod\quad p(x)\Longrightarrow { (x-1) }^{ 2016 }{ \equiv x }^{ 4032 }\quad mod\quad p(x)

But

x 3 + 1 = 0 ( x + 1 ) ( x 2 x + 1 ) = 0 x 3 + 1 0 m o d p ( x ) x 3 1 m o d p ( x ) ( x 3 ) 1344 1 m o d p ( x ) { x }^{ 3 }+1=0\Longleftrightarrow (x+1)({ x }^{ 2 }-x+1)=0\quad \therefore \quad { x }^{ 3 }+1\equiv 0\quad mod\quad p(x)\Longleftrightarrow { x }^{ 3 }\equiv -1\quad mod\quad p(x)\Longrightarrow { ({ x }^{ 3 } })^{ 1344 }\equiv 1\ mod\quad p(x)

Hence

( x 1 ) 2016 1 m o d p ( x ) ( x 1 ) 2017 ( x 1 ) m o d p ( x ) P 1 ( x ) = x 1 { (x-1) }^{ 2016 }\equiv 1\quad mod\quad p(x)\quad \Longleftrightarrow \quad { (x-1) }^{ 2017 }\equiv (x-1)\quad mod\quad p(x)\quad \therefore \quad { P }^{ 1 }(x)=x-1

Because d e g ( P 1 ( x ) ) < d e g ( d ( x ) ) deg({ P }^{ 1 }(x))<deg(d(x))

Doing the first cases, we can conjecture that P k ( x ) = x k P^{ k }\left( x \right) =x-k

Which is clearly true for k = 1 k=1

Suppose it is true for a natural number k = n k=n

Then P n ( x ) = x n P^{ n }\left( x \right) =x-n which yields

P n + 1 ( x ) = P 1 ( P n ( x ) ) P n + 1 ( x ) = ( x n ) 1 P n + 1 ( x ) = x ( n + 1 ) { P }^{ n+1 }(x)={ P }^{ 1 }({ P }^{ n }(x))\quad \Longleftrightarrow \quad { P }^{ n+1 }(x)=(x-n)-1\quad \Longleftrightarrow \quad { P }^{ n+1 }(x)=x-(n+1)

P k ( x ) = x k \therefore \quad P^{ k }\left( x \right) =x-k\quad \blacksquare

Therefore, P 2017 ( x ) = x 2017 P 2017 ( 2016 ) = 1 { P }^{ 2017 }(x)=x-2017\quad \therefore \quad \boxed { { P }^{ 2017 }(2016)=-1 }

Nicely done.

You can even shorten the proof by using:

( x 1 ) 3 = ( x 2 ) p ( x ) + 1 ( x 1 ) 3 1 m o d p ( x ) {(x - 1)}^3 = (x - 2)p(x) + 1 \quad \implies \quad {(x - 1)}^3 \equiv 1 \quad mod\quad p(x)

Then

( x 1 ) 2017 = ( ( x 1 ) 3 ) 672 ( x 1 ) x 1 m o d p ( x ) {(x - 1)}^{2017} = ({(x - 1)}^{3})^{672}(x-1) \quad \equiv \quad x - 1 \quad mod \quad p(x)

...

Abdelhamid Saadi - 4 years, 7 months ago

Log in to reply

nice! I liked it

João Vitor Cordeiro de Brito - 4 years, 5 months ago

Nicely done.

The first half of the solution seems almost "lucky / magical". Yong's solution provides the mathematical theory to explain how we can compute the answer without having several observations.

Calvin Lin Staff - 4 years, 7 months ago
Yong See Foo
Oct 29, 2016

Solve d ( x ) = 0 d(x)=0 first (using whatever means) to obtain the two roots u = cis π 3 u=\text{cis}\frac{\pi}{3} and v = cis π 3 v=\text{cis}\frac{-\pi}{3} . Note that p ( u ) = ( u 1 ) 2017 = u 1 = v p(u)=(u-1)^{2017}=u-1=-v and p ( u ) = ( u 1 ) 2017 = u 1 = v p(u)=(u-1)^{2017}=u-1=-v . If we let P 1 ( x ) = a x + b P^1(x)=ax+b for some constants a a and b b , then we can write p ( x ) = Q ( x ) d ( x ) + a x + b p(x)=Q(x)d(x)+ax+b . Substituting x = u x=u and x = v x=v into this result gives v = a u + b -v=au+b and u = a v + b -u=av+b . Subtracting the last two equations give u v = a ( u v ) a = 1 b = u v = 1 u-v=a(u-v)\Rightarrow a=1\Rightarrow b=-u-v=-1 . Hence P 1 ( 1 ) = x 1 P^1(1)=x-1 . Applying this polynomial 2017 2017 times to the number x = 2016 x=2016 gives P 2017 ( 2016 ) = 1 P^{2017}(2016)=\boxed{-1} .

Kushal Dey
May 20, 2021

p(x)=(x-1)²⁰¹⁷, d(x)=x²-x+1. Let x-1=t Thus, p(x)=t²⁰¹⁷, d(x)=t²+t+1. Therefore p(x)=t²⁰¹⁷-t+t=t(t²⁰¹⁶-1)+t=t(t²⁰¹³+t²⁰¹⁰+....1)(t-1)d(x)+t. Therefore P1(x)=t=x-1. Pn(x)=x-n

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...