An algebra problem by Julian Yu

Algebra Level 3

Suppose that x 2017 2 x + 1 = 0 {x}^{2017}-2x+1=0 for x 1 x\neq1 . Find the value of 1 + x + x 2 + x 3 + + x 2016 1+x+{x}^{2}+{x}^{3}+\cdots+{x}^{2016} .

2 4 1 3 5

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
May 13, 2017

x 2017 2 x + 1 = 0 x 2017 = 2 x 1 Both sides 1 x 2017 1 = 2 x 1 1 ( x 1 ) ( 1 + x + x 2 + x 3 + . . . + x 2016 ) = 2 ( x 1 ) ( 1 + x + x 2 + x 3 + . . . + x 2016 ) = 2 for x 1 \begin{aligned} x^{2017} - 2x + 1 & = 0 \\ x^{2017} & = 2x - 1 & \small \color{#3D99F6} \text{Both sides }-1 \\ x^{2017} \color{#3D99F6} -1 & = 2x - 1 \color{#3D99F6} -1 \\ (x-1) \left(1+x+x^2+x^3+...+x^{2016}\right) & = 2(x-1) \\ \implies \left(1+x+x^2+x^3+...+x^{2016}\right) & = 2 & \small \color{#3D99F6} \text{for } x \ne 1 \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...