An algebra problem by Julian Yu

Algebra Level 4

How many distinct pairs ( x , y ) (x, y) of real numbers satisfy the equation ( x + y ) 2 = ( x + 4 ) ( y 4 ) { (x+y })^{ 2 }=(x+4)(y-4) ?

4 2 1 3 0

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
Mar 17, 2016

Let u = x + 4 u = x+4 and v = x 4 v = x-4 . Then we have:

( x + y ) 2 = ( x + 4 ) ( x 4 ) ( u + v ) 2 = u v u 2 + u v + v 2 = 0 u = v ± v 2 4 v 2 2 = v ± 3 v 2 2 \begin{aligned} (x+y)^2 & = (x+4)(x-4) \\ (u+v)^2 & = uv \\ u^2 + uv + v^2 & = 0 \\ \Rightarrow u & = \frac{-v \pm \sqrt{v^2-4v^2}}{2} \\ & = \frac{-v \pm \sqrt{\color{#3D99F6}{-3v^2}}}{2} \end{aligned}

We note that 3 v 2 0 \color{#3D99F6}{-3v^2} \le 0 therefore, u u is only real when 3 v 2 = 0 \color{#3D99F6}{-3v^2} = 0 , that is v = 0 v = 0 and u = 0 u=0 and that x = 4 x = -4 and y = 4 y = 4 . Therefore, there is only 1 \boxed{1} pair of ( x , y ) (x,y) that satisfies the equation.

P C
Mar 19, 2016

I have two ways to solve this problem

1

We set a = x + 4 a=x+4 ; b = y 4 b=y-4 , then the equation becomes ( a + b ) 2 = a b (a+b)^2=ab We have this inequality for all reals ( a + b ) 2 4 a b (a+b)^2\geq 4ab 3 ( a + b ) 2 0 \Leftrightarrow 3(a+b)^2\leq 0 a = b x = y \Rightarrow a=-b\Leftrightarrow x=-y So now we have ( x + 4 ) ( x 4 ) = 0 x = 4 (x+4)(-x-4)=0\Leftrightarrow x=-4 So there are one pair ( x , y ) = ( 4 ; 4 ) (x,y)=(-4;4)

2

We set y = t x y=tx and the equation becomes ( t + 1 ) 2 x 2 = ( x + 4 ) ( t x 4 ) (t+1)^2x^2=(x+4)(tx-4) [ ( t + 1 ) 2 t ] x 2 4 ( t 1 ) x + 16 = 0 \Leftrightarrow [(t+1)^2-t]x^2-4(t-1)x+16=0 We see that ( t + 1 ) 2 t (t+1)^2\neq t so x x exist when Δ 0 \Delta'\geq 0 4 ( t 1 ) 2 16 ( t + 1 ) 2 + 16 t 0 \Leftrightarrow 4(t-1)^2-16(t+1)^2+16t\geq 0 12 t 2 + 24 t + 12 0 \Leftrightarrow 12t^2+24t+12\leq 0 t = 1 \Leftrightarrow t=-1 With t = 1 t=-1 we get x = 4 y = 4 x=-4\Rightarrow y=4 So there's only one pair ( x , y ) (x,y) satisfy the equation

Julian Yu
Feb 12, 2016

Expanding and moving everything to one side gives us x 2 + ( y + 4 ) x + y 2 4 y + 16 = 0. { x }^{ 2 }+(y+4)x+{ y }^{ 2 }-4y+16=0.

To eliminate the x y xy term we let z = x + 1 2 y z=x+\frac { 1 }{ 2 } y and replace x x with z 1 2 y z-\frac { 1 }{ 2 } y . The equation above becomes z 2 + 4 ( z 1 2 y ) + 3 4 y 2 4 y + 16 = 0. { z }^{ 2 }+4(z-\frac { 1 }{ 2 } y)+\frac { 3 }{ 4 } { y }^{ 2 }-4y+16=0.

However, z 2 + 4 ( z 1 2 y ) + 3 4 y 2 4 y + 16 = ( z + 2 ) 2 + 3 4 y 2 6 y + 12 { z }^{ 2 }+4(z-\frac { 1 }{ 2 } y)+\frac { 3 }{ 4 } { y }^{ 2 }-4y+16 = { (z+2) }^{ 2 }+\frac { 3 }{ 4 } { y }^{ 2 }-6y+12

= ( z + 2 ) 2 + 3 4 ( y 2 8 y + 16 ) ={ (z+2) }^{ 2 }+\frac { 3 }{ 4 } ({ y }^{ 2 }-8y+16)

= ( z + 2 ) 2 + 3 4 ( y + 4 ) 2 . ={ (z+2 })^{ 2 }+\frac { 3 }{ 4 } { (y+4) }^{ 2 }.

So the only real solution is when z = 2 z=-2 and y = 4 y=4 ; i.e. x = 4 x=-4 and y = 4. y=4.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...