Try everything

Algebra Level 5

( x + 1 x ) 2 + ( x 2 + 1 x 2 ) 2 + ( x 3 + 1 x 3 ) 2 + + ( x 2016 + 1 x 2016 ) 2 \large \left(x + \frac{1}{x}\right)^2 + \left(x^2 + \frac{1}{x^2}\right)^2 + \left(x^3 + \frac{1}{x^3}\right)^2 + \cdots + \left(x^{2016} + \frac{1}{x^{2016}}\right)^2

If x 2 + x + 1 = 0 { x }^{ 2 }+x+1=0 , evaluate the expression above.


The answer is 4032.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

6 solutions

Chew-Seong Cheong
May 10, 2016

x 2 + x + 1 = 0 Multiply both sides by x x 3 + x 2 + x = 0 Add 1 both sides x 3 + x 2 + x + 1 = 0 + 1 x 3 + 0 = 1 x 3 = 1 \begin{aligned} x^2 + x + 1 & = 0 \quad \quad \small \color{#3D99F6}{\text{Multiply both sides by }x} \\ x^3 + x^2 + x & = 0 \quad \quad \small \color{#3D99F6}{\text{Add 1 both sides}} \\ x^3 + \color{#3D99F6}{x^2 + x + 1} & = 0 + 1 \\ x^3 + \color{#3D99F6}{0} & = 1 \\ \implies x^3 & = 1 \end{aligned}

Also we have:

x 2 + x + 1 = 0 x + 1 + 1 x = 0 x + 1 x = 1 x 2 + 1 x 2 = ( x + 1 x ) 2 2 = 1 x 3 + 1 x 3 = 1 + 1 = 2 \begin{aligned} x^2 + x + 1 & = 0 \\ x + 1 + \frac{1}{x} & = 0 \\ x + \frac{1}{x} & = -1 \\ x^2 + \frac{1}{x^2} & = \left(x + \frac{1}{x}\right)^2 - 2 = - 1 \\ x^3 + \frac{1}{x^3} & = 1 + 1 = 2 \end{aligned}

Since x 3 = 1 x n + 1 x n = { 2 if n 0 (mod 3) 1 if n ≢ 0 (mod 3) x^3 = 1\implies x^n + \dfrac{1}{x^n} = \begin{cases} 2 & \text{if } n \equiv 0 \text{ (mod 3)} \\ -1 & \text{if } n \not{\equiv} 0 \text{ (mod 3)} \end{cases}

S = ( x + 1 x ) 2 + ( x 2 + 1 x 2 ) 2 + ( x 3 + 1 x 3 ) 2 + + ( x 2016 + 1 x 2016 ) 2 = 1 + 1 + 4 + 1 + 1 + 4 + + 4 = 2016 ( 1 ) + ( 4 1 ) 2016 3 = 2016 + 2016 = 4032 \begin{aligned} S & = \left(x + \frac{1}{x}\right)^2 + \left(x^2 + \frac{1}{x^2}\right)^2 + \left(x^3 + \frac{1}{x^3}\right)^2 + \cdots + \left(x^{2016} + \frac{1}{x^{2016}}\right)^2 \\ & = 1+1+4+1+1+4+\cdots+4 \\ & = 2016(1) + (4-1)\left \lfloor \frac{2016}{3} \right \rfloor \\ & = 2016 + 2016 \\ & = \boxed{4032} \end{aligned}

Sir how x 3 = 1 x^3 = 1 ??

Chirayu Bhardwaj - 5 years, 1 month ago

Log in to reply

I have added an explanation.

Chew-Seong Cheong - 5 years, 1 month ago

Multiply both the sides by x-1.

bhavay kukreja - 5 years, 1 month ago

Your solutions are really well explained with an uncommon and new approach sir...really love ur solutions. ..+1.

Rishabh Tiwari - 5 years, 1 month ago

A totally novel approach...nice solution upvoted.

Puneet Pinku - 5 years ago
Rishabh Tiwari
May 15, 2016

Clearly , We know by cube roots of unity,.....

That x= omega , (omega)^2,.......

Now, evaluating the sum of first 3 expansions (lets call it a triad!!), by using the rules of cube roots of unity,

We get →

1 + 1 + 4 = 6

Now this triad....keeps on repeating itself and hence appears 2016/3 =672 times ......therefore required sum→

672 × 6 = 4032...{ans.}

Chan Lye Lee
May 10, 2016

x 2 + x + 1 = 0 x^2+x+1=0 implies that x + 1 x = 1 x+\frac{1}{x}=-1 .

If θ = 2 π 3 \theta = \frac{2\pi}{3} and x = cos θ + i sin θ x=\cos\theta+i\sin\theta , then x + 1 x = 2 cos θ = 1 x+\frac{1}{x}=2\cos\theta=-1 .

Now, x n + 1 x n = 2 cos n θ = 2 cos 2 n π 3 = { ± 2 if n = 3 k ± 1 if n 3 k x^n+\frac{1}{x^n}=2\cos n\theta=2\cos\frac{2n\pi}{3} = \begin{cases} \pm 2 & \text{if } n=3k \\ \pm 1 & \text{if } n \neq 3k\end{cases} . So ( x n + 1 x n ) 2 = { 4 if n = 3 k 1 if n 3 k \left(x^n+\frac{1}{x^n}\right)^2= \begin{cases} 4 & \text{if } n=3k \\ 1 & \text{if } n \neq 3k\end{cases} .

Hence the desired answer is ( 1 + 1 + 4 ) × 2016 3 = 4032 (1+1+4) \times \frac{2016}{3}=4032 .

Nice approach using De moivre's solution.

Puneet Pinku - 5 years ago

Take x = w(omega) So x+1/x = -1 But x^3n = 1 Therefore Answer( 1+1+4)*2016/3

L e t f ( n ) = X n + 1 X n . X 2 + X + 1 = 0 , x + 1 X = 1 , f ( 1 ) = 1.... { f ( 1 ) } 2 = 1 f ( 2 ) + 2 = f ( 1 ) 2 , f ( 2 ) = 1. { f ( 2 ) } 2 = 1 f ( 3 ) + 3 1 f ( 1 ) = f ( 1 ) 3 = 1 , f ( 3 ) = 2 { f ( 3 ) } 2 = 4 { f ( 2 ) } 2 = f ( 4 ) + 2 = 1 , f ( 4 ) = 1 { f ( 4 ) } 2 = 1 f ( 2 ) f ( 3 ) = 2 , b u t f ( 2 ) f ( 3 ) = f ( 5 ) f ( 1 ) = f ( 5 ) ( 1 ) { f ( 5 ) } 2 = 1 f ( 3 ) 2 = f ( 6 ) + 2 , b u t f ( 3 ) 2 = 4 , { f ( 6 ) } 2 = 4 t h i s i s c y c l i c f u n c t i o n w i t h p e r i o d 3. f ( n 1 o r 2 ( m o d 3 ) ) 2 = 1 , a n d f ( n 0 ( m o d 3 ) ) = 4 e a c h c y c l e o f 3 a d d s 6. 3 2016 , T o t a l = 2 2016 = 4032 Let f(n)=X^n+\dfrac 1 {X^n}.\\ X^2+X+1=0,\ \ \implies\ \ x+\dfrac 1 X= - 1,\ \ \implies\ f(1)= -1. ...\color{#3D99F6}{**}\ \ \ \ \ \ \therefore\ \ \color{#3D99F6}{\{f(1)\}^2=1}\\ f(2)+2=f(1)^2,\ \ \implies\ \ f(2)=-1.\ \ \ \therefore\ \ \color{#3D99F6}{\{f(2)\}^2=1}\\ f(3)+3*1* f(1)=f(1)^3= - 1,\ \ \implies\ f(3)=2\ \ \ \ \ \ \therefore\ \ \color{#3D99F6}{\{f(3)\}^2=4}\\ \{f(2)\}^2=f(4)+2=1,\ \ \ \ \implies\ f(4)=-1\ \ \ \ \ \ \therefore\ \ \color{#3D99F6}{\{f(4)\}^2=1}\\ f(2)*f(3)=- 2,\ \ but\ \ f(2)*f(3)=f(5) - f(1)=f(5) - (- 1) \ \ \ \ \ \ \therefore\ \ \color{#3D99F6}{\{f(5)\}^2=1}\\ f(3)^2=f(6)+2,\ \ but\ \ f(3)^2=4, \ \ \ \ \ \ \therefore\ \ \color{#3D99F6}{\{f(6)\}^2=4}\\ \therefore\ \ this \ is\ cyclic\ function\ with \ period\ 3.\\ \therefore\ \ f(\ n \equiv 1\ or\ 2\ ( mod\ 3)\ )^2=1, \ and\ \ \ \ f(\ n\ \equiv\ 0\ (mod\ 3)\ )=4\\ \implies\ each \ cycle\ of\ 3\ adds\ 6.\\ 3|2016,\ \ \therefore\ \ Total=2*2016=\color{#D61F06}{4032}

Aditya Kumar
May 22, 2016

Just take x as a cube root of unity . Then its easy

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...