sum

Algebra Level pending

Find the sum of 1 1 4 + 1 16 1 64 + . . . 1-\frac { 1 }{ 4 } +\frac { 1 }{ 16 } -\frac { 1 }{ 64 } +...


The answer is 0.8.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Jake Lai
Dec 7, 2014

Let s = 1 1 4 + 1 16 1 64 + s = 1-\frac{1}{4}+\frac{1}{16}-\frac{1}{64}+\ldots .

4 s = 4 1 + 1 4 1 16 + = 4 s 4s = 4-1+\frac{1}{4}-\frac{1}{16}+\ldots = 4-s .

Now we solve for s s :

5 s = 4 s = 4 5 5s = 4 \longrightarrow s = \boxed{\frac{4}{5}} .

nice solution

Justin Tuazon - 6 years, 6 months ago
Justin Tuazon
Dec 7, 2014

1 1 4 + 1 16 1 64 + . . . = t = 0 1 ( 4 ) t = 1 1 ( 1 4 ) = 1 5 4 = 4 5 = 0.8 1-\frac { 1 }{ 4 } +\frac { 1 }{ 16 } -\frac { 1 }{ 64 } +...\\ =\sum _{ t=0 }^{ \infty }{ \frac { 1 }{ (-{ 4) }^{ t } } } =\frac { 1 }{ 1-(-\frac { 1 }{ 4 } ) } \\ =\frac { 1 }{ \frac { 5 }{ 4 } } =\frac { 4 }{ 5 } =0.8

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...