Let X= ⎝ ⎛ − 1 + − 2 + − 2 + − 2 + − 2 + . . . 2 2 2 2 ⎠ ⎞ 1 0 0 0 Reverse the last two integral digits of X to form a two-digit number Y.
Find the value of ⌊ 3 Y ⌋ .
P.S. -1 is not an error
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
As that complex expression is going upto infinity.. So let that expression be z.. And we can take any no of branches bcz its going upto infinity... So by equating any 2 branches we get a quadratic equation in z and z =0.. Therefore X = 1^1000 = 01
Problem Loading...
Note Loading...
Set Loading...
L e t Z = − 2 + − 2 + − 2 + . . . 2 2 T h e n X = ( Z + 1 ) 1 0 0 0 A l s o , Z = − 2 + Z 2 i . e . Z 2 = − 2 Z + 2 T h u s Z 2 + 2 Z − 2 = 0 Z = − 1 ± 3 T h e r e f o r e Z + 1 = ± 3 ± 3 1 0 0 0 = 9 2 5 0 A l s o n o t e t h a t 8 1 ( 2 0 a + 1 ( m o d 1 0 0 ) ) ≡ 1 6 2 0 a + 8 1 ( m o d 1 0 0 ) ≡ 1 6 0 0 a + 2 0 a + 8 1 ( m o d 1 0 0 ) ≡ 2 0 a − 1 9 ( m o d 1 0 0 ) ≡ 2 0 a − 2 0 + 1 ( m o d 1 0 0 ) ≡ 2 0 ( a − 1 ) + 1 ( m o d 1 0 0 ) T h e r e f o r e , s i n c e t h e l a s t t w o d i g i t s o f 9 2 a r e 8 1 , t h e l a s t t w o d i g i t s o f 9 4 , 9 6 . . . a r e 6 1 , 4 1 , 2 1 . . . F o l l o w i n g b y t h i s , t h e l a s t t w o d i g i t s o f 9 2 5 0 a r e 0 1 . R e v e r s e t h e s e t o g e t Y = 1 0 . T h e n ⌊ 3 Y ⌋ = 3 .