An algebra problem by K. J. W.

Algebra Level 4

Let X= ( 1 + 2 2 + 2 2 + 2 2 + 2 2 + . . . ) 1000 { \left( -1+\frac { 2 }{ -2+\frac { 2 }{ -2+\frac { 2 }{ -2+\frac { 2 }{ -2+... } } } } \right) }^{ 1000 } Reverse the last two integral digits of X to form a two-digit number Y.

Find the value of Y 3 \left\lfloor \frac { Y }{ 3 } \right\rfloor .

P.S. -1 is not an error


The answer is 3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

K. J. W.
Jul 13, 2014

L e t Z = 2 + 2 2 + 2 2 + . . . T h e n X = ( Z + 1 ) 1000 A l s o , Z = 2 + 2 Z i . e . Z 2 = 2 Z + 2 T h u s Z 2 + 2 Z 2 = 0 Z = 1 ± 3 T h e r e f o r e Z + 1 = ± 3 ± 3 1000 = 9 250 A l s o n o t e t h a t 81 ( 20 a + 1 ( m o d 100 ) ) 1620 a + 81 ( m o d 100 ) 1600 a + 20 a + 81 ( m o d 100 ) 20 a 19 ( m o d 100 ) 20 a 20 + 1 ( m o d 100 ) 20 ( a 1 ) + 1 ( m o d 100 ) T h e r e f o r e , s i n c e t h e l a s t t w o d i g i t s o f 9 2 a r e 81 , t h e l a s t t w o d i g i t s o f 9 4 , 9 6 . . . a r e 61 , 41 , 21... F o l l o w i n g b y t h i s , t h e l a s t t w o d i g i t s o f 9 250 a r e 01. R e v e r s e t h e s e t o g e t Y = 10. T h e n Y 3 = 3. Let\quad Z=-2+\frac { 2 }{ -2+\frac { 2 }{ -2+... } } \\ Then\quad X={ \left( Z+1 \right) }^{ 1000 }\\ Also,\quad Z=-2+\frac { 2 }{ Z } \\ i.e.\quad { Z }^{ 2 }=-2Z+2\\ Thus\quad { Z }^{ 2 }+2Z-2=0\\ Z=-1\pm \sqrt { 3 } \\ Therefore\quad Z+1=\pm \sqrt { 3 } \\ \pm { \sqrt { 3 } }^{ 1000 }\\ ={ 9 }^{ 250 }\\ Also\quad note\quad that\\ 81(20a+1(mod\quad 100))\\ \equiv 1620a+81(mod\quad 100)\\ \equiv 1600a+20a+81(mod\quad 100)\\ \equiv 20a-19(mod\quad 100)\\ \equiv 20a-20+1(mod\quad 100)\\ \equiv 20(a-1)+1(mod\quad 100)\\ Therefore,\quad since\quad the\quad last\quad two\quad digits\quad of\quad { 9 }^{ 2 }\quad are\quad 81,\quad the\quad last\quad two\quad digits\quad of\\ { 9 }^{ 4 },{ 9 }^{ 6 }...\quad are\quad 61,41,21...\\ Following\quad by\quad this,\quad the\quad last\quad two\quad digits\quad of\quad { 9 }^{ 250 }\quad are\quad 01.\\ Reverse\quad these\quad to\quad get\quad Y=10.\\ Then\left\lfloor \frac { Y }{ 3 } \right\rfloor =3.

As that complex expression is going upto infinity.. So let that expression be z.. And we can take any no of branches bcz its going upto infinity... So by equating any 2 branches we get a quadratic equation in z and z =0.. Therefore X = 1^1000 = 01

Y = 10

[Y/3] = 3

Kïñshük Sïñgh - 6 years, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...