Reciprocal of Squares

Algebra Level 4

Given that k = 1 1 k 2 1.645 \displaystyle \sum _{ k=1 }^{ \infty }{ \frac { 1 }{ { k }^{ 2 } } } \approx 1.645 ,

If X = 1 1 2 + 1 2 2 + . . . + 1 100 2 X=\frac { 1 }{ { 1 }^{ 2 } } +\frac { 1 }{ { 2 }^{ 2 } } +...+\frac { 1 }{ { 100 }^{ 2 } } , find the first 2 digits after the decimal point of X. (Note: the 'first 2 digits' is without rounding.)


The answer is 63.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

K. J. W.
Mar 3, 2016

1 100 = 1 100 × 101 + 1 101 × 102 + . . . > 1 101 2 + 1 102 2 + . . . > 1 101 × 102 + 1 102 × 103 + . . . = 1 101 T h e r e f o r e 1 101 2 + 1 102 2 + . . . 0.0099... 1 1 2 + 1 2 2 + . . . + 1 100 2 = k = 1 1 k 2 ( 1 101 2 + 1 102 2 + . . . ) 1.635 a n d t h e t w o d i g i t s a f t e r t h e d e c i m a l p o i n t a r e 63 . \\ \frac { 1 }{ 100 } =\frac { 1 }{ 100\times 101 } +\frac { 1 }{ 101\times 102 } +...\\ \quad \quad \quad \quad >\frac { 1 }{ { 101 }^{ 2 } } +\frac { 1 }{ { 102 }^{ 2 } } +...\\ \quad \quad \quad \quad >\frac { 1 }{ 101\times 102 } +\frac { 1 }{ 102\times 103 } +...\\ \quad \quad \quad \quad =\frac { 1 }{ 101 } \\ Therefore\\ \frac { 1 }{ { 101 }^{ 2 } } +\frac { 1 }{ { 102 }^{ 2 } } +...\approx 0.0099...\\ \therefore \frac { 1 }{ { 1 }^{ 2 } } +\frac { 1 }{ { 2 }^{ 2 } } +...+\frac { 1 }{ { 100 }^{ 2 } } =\sum _{ k=1 }^{ \infty }{ \frac { 1 }{ { k }^{ 2 } } } -(\frac { 1 }{ { 101 }^{ 2 } } +\frac { 1 }{ { 102 }^{ 2 } } +...)\\ \approx 1.635\quad and\quad the\quad two\quad digits\quad after\quad the\quad decimal\quad point\quad are\quad \boxed { 63 } .

How you write the first four steps... Till before therefore

Punithan Mech - 5 years, 2 months ago

Log in to reply

1 a ( a + 1 ) < 1 a ( a ) < 1 a ( a 1 ) f o r a 2 \frac { 1 }{ a(a+1) } <\frac { 1 }{ a(a) } <\frac { 1 }{ a(a-1) } \quad for\quad a\ge 2

Also, 1 a ( a + 1 ) = 1 a 1 a + 1 \frac { 1 }{ a(a+1) } =\frac { 1 }{ a } -\frac { 1 }{ a+1 } , so the terms cancel out to 1/100 and 1/101 since the sum is to infinity.

K. J. W. - 5 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...