An algebra problem by Krishna Sharma

Algebra Level 5

Given that the sum of the maximum and minimum value of

x 4 x 8 + 2 x 6 4 x 4 + 8 x 2 + 16 \frac{x^4}{x^8+2x^6-4x^4+8x^2+16}

can be expressed in the form p q \frac{p}{q} , where p p and q q are coprime, positive integers, find the value of p + q p+q .


The answer is 13.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Deepanshu Gupta
Oct 5, 2014

Divide numerator and denominator of f(x) by x 4 { x }^{ 4 } . therefore

f ( x ) = 1 ( x 4 + 16 x 4 ) + ( 2 x 2 + 8 x 2 ) 4 f\left( x \right) =\quad \dfrac { 1 }{ { (x }^{ 4 }+{ \frac { 16 }{ { x }^{ 4 } } ) }^{ }{ +(2x }^{ 2 }+\frac { 8 }{ { x }^{ 2 } } )\quad -4 } .

Now using the Fact that If a,b are positive Variables then By AM-GM inequality:

a + b 2 a b a\quad +\quad b\quad \ge \quad 2\sqrt { ab } .

therefore minimum Value of denominator in f(x) ( or We can say maximum value of f(x) ) occures at when AM=GM

i.e when x 4 = 16 x 4 x = 2 \Rrightarrow \quad \quad { x }^{ 4 }=\frac { 16 }{ { x }^{ 4 } } \\ \\ \Rrightarrow \quad \quad x=\sqrt { 2 } .

f ( x ) m a x = 1 8 + 8 4 = 1 12 { f\left( x \right) }_{ max }=\frac { 1 }{ 8+8-4 } =\frac { 1 }{ 12 } .

And minimum Value of f(x) occurs at :

x=0

So f ( x ) m i n = 0 { f\left( x \right) }_{ min }=0 .

P=1 & q=12

P+q=13 Q.E.D

Let the given polynomial as y, dy/ dx will= 0 when x= 2, and 2^1/2 then put x= 0 and x= 2^1/2 to the original polynomial (y), you will get y= 0 (minimum value) and y=1/ 12 (maximum value), respectively so p/q= 0+ 1/12= 1/12, p+ q= 1+ 12= 13

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...