An algebra problem by Kshetrapal Dashottar

Algebra Level 2

Let f f be a real function satisfying f ( x ) + f ( 1 x ) = 10 f(x) + f(1-x) = 10 for all real x x . Find n = 1 99 f ( n 100 ) \displaystyle\sum_{n=1}^{99} f\left( \dfrac n{100} \right) .

490 492 491 495

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Sabhrant Sachan
Jun 22, 2016

Let S = f ( 1 100 ) + f ( 2 100 ) + + f ( 99 100 ) S = f ( 99 100 ) + f ( 98 100 ) + + f ( 1 100 ) Add the Two equations , we get 2 S = ( f ( 1 100 ) + f ( 99 100 ) ) + ( f ( 2 100 ) + f ( 98 100 ) ) + + ( f ( 99 100 ) + f ( 1 100 ) ) 2 S = 99 10 S = 495 \text{Let } S = f\left( \dfrac{1}{100} \right)+f\left( \dfrac{2}{100} \right)+\cdots+f\left( \dfrac{99}{100} \right) \\ \quad S = f\left( \dfrac{99}{100} \right)+f\left( \dfrac{98}{100} \right)+\cdots+f\left( \dfrac{1}{100} \right) \\ \text{Add the Two equations , we get } \\ \quad 2S = \left( f\left( \dfrac{1}{100} \right)+f\left( \dfrac{99}{100} \right) \right) +\left( f\left( \dfrac{2}{100} \right)+f\left( \dfrac{98}{100} \right) \right) +\cdots+\left( f\left( \dfrac{99}{100} \right)+f\left( \dfrac{1}{100} \right) \right) \\ \quad 2S = 99\cdot10 \implies \boxed{ S = 495 }

so f(x)+f(1-x)=10
to find f(1/100)+f(2/100)+f(3/100)+.....+f(99/100)
so by making pair of first and last term , second and second last term and so on we find that first term is f(x) and second is f(1-x) So, f(1/100)+f(99/100),f(2/100)+f(98/100),f(3/100)+f(97/100),.........,f(49/100)+f(51/100) all equal to 10 so sum of these 49 terms each value 10
will be 49 times10=490
now the term left is f(50/100) now this is f(x) also and f(1-x) also
(because 50/100 =1-50/100) so f(50/100)+f(50/100)=10
2*f(50/100)=10 , f(50/100)=5
so the ans is 490+5=495


0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...